欢迎访问宙启技术站
智能推送

Python中使用object_detection.core.post_processing进行目标检测的步骤解析

发布时间:2024-01-05 18:05:52

object_detection.core.post_processing是TensorFlow Object Detection API中用于目标检测后处理的模块。该模块提供了一些有用的函数和类,用于处理目标检测模型的输出,并进行边界框的筛选、NMS(非极大值抑制)等操作,以提高目标检测的准确性和效果。

以下是使用object_detection.core.post_processing进行目标检测的一般步骤,并带有一个简单的使用例子:

1. 导入需要的模块和函数:

from object_detection.core import post_processing 
from object_detection.utils import visualization_utils as vis_util

2. 加载模型和输入图像:

import tensorflow as tf
from object_detection.utils import label_map_util
import cv2

# 加载模型
detection_graph = tf.Graph()
with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')

# 加载标签映射表
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

# 加载输入图像
image = cv2.imread(PATH_TO_IMAGE)

3. 运行目标检测模型:

with detection_graph.as_default():
    with tf.Session(graph=detection_graph) as sess:
        # 获取输入和输出张量
        image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
        detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
        detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
        detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
        num_detections = detection_graph.get_tensor_by_name('num_detections:0')

        # 输入图像,运行模型
        image_expanded = np.expand_dims(image, axis=0)
        (boxes, scores, classes, num) = sess.run(
            [detection_boxes, detection_scores, detection_classes, num_detections],
            feed_dict={image_tensor: image_expanded})

4. 对模型输出进行后处理:

# 应用阈值,筛选置信度高于阈值的边界框
detections = post_processing.filter_boxes(boxes[0], scores[0], threshold=0.5)

# 按置信度排序
detections = post_processing.sort_boxes(detections)

# 非极大值抑制(NMS)
detections = post_processing.non_max_suppression(detections, nms_threshold=0.5)

# 将边界框转换到原始图像中的坐标
detections = vis_util.return_coordinates(image, detections)

# 可视化结果
vis_util.visualize_boxes_and_labels_on_image_array(
    image,
    detections,
    category_index,
    use_normalized_coordinates=True,
    line_thickness=8,
    )

# 显示结果图像
cv2.imshow('Object Detection', image)
cv2.waitKey(0)

通过以上步骤,我们可以使用object_detection.core.post_processing模块对目标检测模型的输出进行后处理,筛选出置信度高的边界框,并在原始图像上进行可视化显示,从而完成目标检测任务。