欢迎访问宙启技术站
智能推送

使用Python的models.resnetresnet18()进行人脸表情识别

发布时间:2024-01-05 04:38:00

使用Python的torchvision.models.resnet.resnet18()模型进行人脸表情识别,首先需要安装相应的库和数据集。

1. 安装库和数据集:

   pip install torch torchvision
   

   pip install matplotlib
   

   pip install opencv-python
   

   pip install numpy
   

2. 导入所需的库:

   import torch
   import torch.nn as nn
   import torch.optim as optim
   from torchvision import models, transforms
   import matplotlib.pyplot as plt
   import cv2
   import numpy as np
   

3. 定义函数用于加载数据和进行预处理:

   def load_data():
       data_transform = transforms.Compose([
           transforms.ToPILImage(),
           transforms.ToTensor(),
           transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
       ])

       test_dataset = datasets.ImageFolder(root='path/to/test_dataset', transform=data_transform)
       test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=4, shuffle=True)

       return test_loader
   

4. 加载模型:

   model = models.resnet18(pretrained=True)
   

5. 修改最后一层全连接层的输出:

   num_ftrs = model.fc.in_features
   model.fc = nn.Linear(num_ftrs, 7)
   

6. 加载训练好的权重:

   model.load_state_dict(torch.load('path/to/weights'))
   

7. 定义类别标签:

   label_dict = {0: 'Angry', 1: 'Disgust', 2: 'Fear', 3: 'Happy', 4: 'Sad', 5: 'Surprise', 6: 'Neutral'}
   

8. 进行表情识别:

   def predict_emotion(image):
       image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
       image = cv2.resize(image, (224, 224))
       image = image / 255.0
       image = torch.from_numpy(image.transpose((2, 0, 1))).float()
       image = image.unsqueeze(0)

       model.eval()
       with torch.no_grad():
           output = model(image)
           _, predicted = torch.max(output, 1)

       return label_dict[predicted.item()]
   

9. 加载测试图像并进行表情识别:

   test_loader = load_data()
   images, labels = iter(test_loader).next()
   for i in range(len(images)):
       image = images[i].numpy()
       emotion = predict_emotion(image)

       plt.imshow(image)
       plt.title(emotion)
       plt.show()
   

这样就可以使用Python的models.resnet.resnet18()模型实现人脸表情识别了。通过加载预训练好的权重,模型可以自动提取图像特征,并输出对应的表情标签。以上示例代码可以帮助你使用该模型进行人脸表情识别。