使用Python的models.resnetresnet18()进行人脸表情识别
发布时间:2024-01-05 04:38:00
使用Python的torchvision.models.resnet.resnet18()模型进行人脸表情识别,首先需要安装相应的库和数据集。
1. 安装库和数据集:
pip install torch torchvision
pip install matplotlib
pip install opencv-python
pip install numpy
2. 导入所需的库:
import torch import torch.nn as nn import torch.optim as optim from torchvision import models, transforms import matplotlib.pyplot as plt import cv2 import numpy as np
3. 定义函数用于加载数据和进行预处理:
def load_data():
data_transform = transforms.Compose([
transforms.ToPILImage(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
test_dataset = datasets.ImageFolder(root='path/to/test_dataset', transform=data_transform)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=4, shuffle=True)
return test_loader
4. 加载模型:
model = models.resnet18(pretrained=True)
5. 修改最后一层全连接层的输出:
num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, 7)
6. 加载训练好的权重:
model.load_state_dict(torch.load('path/to/weights'))
7. 定义类别标签:
label_dict = {0: 'Angry', 1: 'Disgust', 2: 'Fear', 3: 'Happy', 4: 'Sad', 5: 'Surprise', 6: 'Neutral'}
8. 进行表情识别:
def predict_emotion(image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (224, 224))
image = image / 255.0
image = torch.from_numpy(image.transpose((2, 0, 1))).float()
image = image.unsqueeze(0)
model.eval()
with torch.no_grad():
output = model(image)
_, predicted = torch.max(output, 1)
return label_dict[predicted.item()]
9. 加载测试图像并进行表情识别:
test_loader = load_data()
images, labels = iter(test_loader).next()
for i in range(len(images)):
image = images[i].numpy()
emotion = predict_emotion(image)
plt.imshow(image)
plt.title(emotion)
plt.show()
这样就可以使用Python的models.resnet.resnet18()模型实现人脸表情识别了。通过加载预训练好的权重,模型可以自动提取图像特征,并输出对应的表情标签。以上示例代码可以帮助你使用该模型进行人脸表情识别。
