欢迎访问宙启技术站
智能推送

使用torch.utils.checkpoint实现高效的模型推理

发布时间:2024-01-05 01:13:38

在深度学习中,模型的推理通常是非常耗时的,特别是在大型模型和大量数据的情况下。为了提高推理的效率,PyTorch提供了torch.utils.checkpoint模块,该模块可以在不牺牲模型精度的前提下,减少内存开销和计算量。

torch.utils.checkpoint的核心思想是将模型的计算图分割成小块,只在需要计算梯度的部分上保留中间状态,并将其存储在硬盘上,以便需要时再进行恢复。这种方式可以减少内存占用,特别适合在推理阶段使用。

下面我们将通过一个简单的示例来演示torch.utils.checkpoint的使用。

假设我们有一个自定义的模型CustomModel,它由几个卷积层和全连接层组成。为了演示的方便,我们将使用FashionMNIST数据集。

首先,我们将定义模型:

import torch
from torch import nn
from torchvision.models.resnet import BasicBlock

class CustomModel(nn.Module):
    def __init__(self):
        super(CustomModel, self).__init__()

        self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(BasicBlock, 64, 2)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(64, 10)

    def _make_layer(self, block, planes, blocks, stride=1):
        layers = []
        layers.append(block(64, 64, stride))
        for _ in range(1, blocks):
            layers.append(block(64, 64))
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)

        return x

然后,我们将定义一个简单的推理函数,以及使用torch.utils.checkpoint进行推理的函数:

import torchvision.transforms as transforms
from torchvision.datasets import FashionMNIST
from torch.utils.data import DataLoader

def inference(model, dataloader):
    model.eval()
    correct = 0
    total = 0

    with torch.no_grad():
        for images, targets in dataloader:
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += targets.size(0)
            correct += (predicted == targets).sum().item()

    accuracy = correct / total
    return accuracy

def inference_with_checkpoint(model, dataloader):
    torch.backends.cudnn.benchmark = True
    model.eval()
    checkpoint = torch.utils.checkpoint.checkpoint(model)
    correct = 0
    total = 0

    with torch.no_grad():
        for images, targets in dataloader:
            outputs = torch.utils.checkpoint.sequential_checkpoints(checkpoint, images)
            _, predicted = torch.max(outputs.data, 1)
            total += targets.size(0)
            correct += (predicted == targets).sum().item()

    accuracy = correct / total
    return accuracy

其中,inference函数是普通的模型推理函数,inference_with_checkpoint函数使用了torch.utils.checkpoint来提高推理的效率。注意,在使用torch.utils.checkpoint.sequential_checkpoints函数时,需要先调用torch.backends.cudnn.benchmark = True来启用cuDNN的自动调优。

最后,我们将加载FashionMNIST数据集,并使用这两个函数进行推理并比较效果:

# 加载FashionMNIST数据集
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
test_dataset = FashionMNIST(root='./data', train=False, transform=transform, download=True)
test_dataloader = DataLoader(test_dataset, batch_size=64, shuffle=False)

# 创建模型
model = CustomModel()

# 普通推理
accuracy = inference(model, test_dataloader)
print("Accuracy (Normal Inference):", accuracy)

# 带checkpoint的推理
accuracy_checkpoint = inference_with_checkpoint(model, test_dataloader)
print("Accuracy (Inference with Checkpoint):", accuracy_checkpoint)

通过以上代码,我们可以进行模型推理,并可以比较普通推理和带有torch.utils.checkpoint的推理的精度和效率。使用torch.utils.checkpoint可以显著减少模型推理的时间和内存开销,特别是对于大型模型和大量数据。