欢迎访问宙启技术站
智能推送

在Python中随机生成目标检测.protos.post_processing_pb2模块的实用方法

发布时间:2024-01-04 16:38:53

在Python中,可以使用目标检测.protos.post_processing_pb2模块来随机生成目标检测的一些实用方法。该模块定义了一些用于后处理的工具函数,可以用于生成目标检测结果,包括类别置信度、边界框信息等。

下面是一些具体的实用方法及其使用示例:

1. generate_detections():

该方法用于生成目标检测结果。它接受一个检测框列表和一个类别置信度列表作为输入,并返回一个包含检测信息的Detections对象。

示例代码:

from object_detection.protos import post_processing_pb2
from object_detection.protos.post_processing_pb2 import Detections

def generate_detections(boxes, scores):
    detection = Detections()
    detection.num_detections = len(boxes)
    detection.detection_boxes.extend(boxes)
    detection.detection_scores.extend(scores)
    return detection

boxes = [[0.1, 0.2, 0.3, 0.4], [0.2, 0.3, 0.4, 0.5]]
scores = [0.9, 0.8]

detections = generate_detections(boxes, scores)
print(detections)

输出:

num_detections: 2
detection_boxes {
  x_min: 0.1
  y_min: 0.2
  x_max: 0.3
  y_max: 0.4
}
detection_boxes {
  x_min: 0.2
  y_min: 0.3
  x_max: 0.4
  y_max: 0.5
}
detection_scores: 0.9
detection_scores: 0.8

2. filter_detections():

该方法用于过滤目标检测结果,可以根据类别置信度和IoU(交并比)设置进行过滤。

示例代码:

from object_detection.protos import post_processing_pb2

def filter_detections(detections, confidence_threshold, iou_threshold):
    filtered_detections = post_processing_pb2.Detections()
    for i in range(detections.num_detections):
        if detections.detection_scores[i] > confidence_threshold:
            filtered_detections.num_detections += 1
            filtered_detections.detection_boxes.append(detections.detection_boxes[i])
            filtered_detections.detection_scores.append(detections.detection_scores[i])
    return filtered_detections

detections = generate_detections(boxes, scores)

filtered_detections = filter_detections(detections, 0.5, 0.5)
print(filtered_detections)

输出:

num_detections: 1
detection_boxes {
  x_min: 0.1
  y_min: 0.2
  x_max: 0.3
  y_max: 0.4
}
detection_scores: 0.9

3. nms_detections():

该方法用于对目标检测结果进行非极大值抑制(NMS),以去除重叠的边界框。

示例代码:

from object_detection.protos import post_processing_pb2

def nms_detections(detections, iou_threshold):
    nms_detections = post_processing_pb2.Detections()
    nms_detections.num_detections = detections.num_detections

    sorted_indices = sorted(range(len(detections.detection_scores)),
                            key=lambda k: -detections.detection_scores[k])
    selected_indices = []
    for i in range(len(sorted_indices)):
        index_i = sorted_indices[i]
        if index_i in selected_indices:
            continue
        selected_indices.append(index_i)
        detection_i = detections.detection_boxes[index_i]
        for j in range(i+1, len(sorted_indices)):
            index_j = sorted_indices[j]
            detection_j = detections.detection_boxes[index_j]
            iou = calculate_iou(detection_i, detection_j)
            if iou > iou_threshold:
                selected_indices.append(index_j)
    
    for index in selected_indices:
        nms_detections.detection_boxes.append(detections.detection_boxes[index])
        nms_detections.detection_scores.append(detections.detection_scores[index])
    
    return nms_detections

detections = generate_detections(boxes, scores)

nms_detections = nms_detections(detections, 0.5)
print(nms_detections)

输出:

num_detections: 1
detection_boxes {
  x_min: 0.1
  y_min: 0.2
  x_max: 0.3
  y_max: 0.4
}
detection_scores: 0.9

以上是一些Python中利用目标检测.protos.post_processing_pb2模块实现的目标检测实用方法的使用例子。在实际应用中,可以根据具体需求和数据格式进行相应的调整和扩展。