如何使用Trainer()函数在Python中进行超参数优化
在Python中使用Trainer()函数进行超参数优化通常是指使用训练器来帮助选择模型的超参数,以得到更好的模型性能。Trainer()函数是PyTorch深度学习库的一部分,它提供了训练和验证模型的功能,还包括了一些默认的超参数选项。
下面是一个使用Trainer()函数进行超参数优化的例子,使用的是PyTorch的MNIST数据集。
首先,我们需要导入所需的库和模块:
import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader from torchvision.datasets import MNIST import torchvision.models as models from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.cuda.amp import GradScaler from torch.cuda.amp import autocast from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score import optuna from optuna.trial import TrialState from optuna.samplers import TPESampler
接下来,我们定义网络架构。本例中,我们使用ResNet-18作为基础模型:
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.resnet = models.resnet18(pretrained=True)
num_ftrs = self.resnet.fc.in_features
self.resnet.fc = nn.Linear(num_ftrs, 10)
def forward(self, x):
x = self.resnet(x)
return x
然后,我们定义模型训练的函数train_model():
def train_model(model, train_loader, criterion, optimizer, device):
model.train()
running_loss = 0.0
correct = 0
total = 0
for inputs, labels in train_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
with autocast():
outputs = model(inputs)
loss = criterion(outputs, labels)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
running_loss += loss.item()
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
train_loss = running_loss / len(train_loader)
train_acc = 100. * correct / total
return train_loss, train_acc
接下来,我们定义模型验证的函数test_model():
def test_model(model, test_loader, criterion, device):
model.eval()
test_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in test_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
test_loss /= len(test_loader)
test_acc = 100. * correct / total
return test_loss, test_acc
然后,我们定义超参数优化的函数optimize_objective():
def optimize_objective(trial):
batch_size = trial.suggest_categorical('batch_size', [32, 64, 128])
lr = trial.suggest_loguniform('lr', 1e-5, 1e-1)
momentum = trial.suggest_uniform('momentum', 0.1, 0.9)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=1000)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
scaler = GradScaler()
criterion = nn.CrossEntropyLoss()
for epoch in range(10):
train_loss, train_acc = train_model(model, train_loader, criterion, optimizer, device)
test_loss, test_acc = test_model(model, test_loader, criterion, device)
trial.report(test_acc, epoch)
if trial.should_prune():
raise optuna.exceptions.TrialPruned()
return test_acc
在optimize_objective()函数中,我们定义了三个超参数:batch_size、lr和momentum,并使用optuna库的trial.suggest_*函数指定它们的搜索范围。然后,我们使用这些超参数创建训练和验证数据集的DataLoader对象,并创建模型、优化器和损失函数。接下来,我们使用训练和验证数据集进行模型训练,并在每个epoch结束时报告验证集的准确率。最后,我们将验证集的准确率作为优化的目标。
最后,我们在main函数中使用optuna库的create_study()函数创建一个新的Study对象,并使用TPESampler()作为采样器。然后,我们使用Study对象的optimize()函数进行超参数优化,并打印出 超参数和 目标值。
if __name__ == '__main__':
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = MNIST(root='./data', train=False, download=True, transform=transform)
study = optuna.create_study(sampler=TPESampler())
study.optimize(optimize_objective, n_trials=100)
print('Best trial:')
trial = study.best_trial
print(' Value: {}'.format(trial.value))
print(' Params: ')
for key, value in trial.params.items():
print(' {}: {}'.format(key, value))
在main函数中,我们首先创建MNIST数据集,并使用create_study()函数创建一个新的Study对象。然后,我们使用Study对象的optimize()函数进行超参数优化,指定了n_trials参数来设置优化的迭代次数。最后,我们打印出 超参数和 目标值。
通过这个示例,您可以了解如何使用Trainer()函数在Python中进行超参数优化。您可以根据自己的需求修改示例代码和神经网络架构来进行实验和改进。
