欢迎访问宙启技术站
智能推送

使用Python编写的object_detection.models.ssd_feature_extractor_test特征提取器的单元测试

发布时间:2024-01-03 23:44:28

以下是一个针对object_detection.models.ssd_feature_extractor_test特征提取器的单元测试的例子:

import tensorflow as tf
from object_detection.models.ssd_feature_extractor_test import SSDFeatureExtractorTest

class SSDFeatureExtractorTestTest(tf.test.TestCase):

  def test_feature_maps_have_correct_shapes(self):
    batch_size = 2
    depth_multiplier = 1.0
    pad_to_multiple = 1
    min_depth = 16
    base_architecture = 'resnet_v1_50'
    conv4_kernel_size = None
    reuse_weights = None

    feature_extractor = SSDFeatureExtractorTest(
        is_training=True,
        depth_multiplier=depth_multiplier,
        min_depth=min_depth,
        pad_to_multiple=pad_to_multiple,
        base_architecture=base_architecture,
        conv4_kernel_size=conv4_kernel_size,
        reuse_weights=reuse_weights)

    preprocessed_inputs = tf.random.uniform(
        shape=(batch_size, 300, 300, 3),
        minval=0,
        maxval=255,
        dtype=tf.float32)

    feature_maps = feature_extractor.extract_features(preprocessed_inputs)

    expected_feature_map_shapes = {
        'Conv2d_3': (batch_size, 19, 19, 512),
        'Conv2d_4': (batch_size, 10, 10, 1024),
        'Conv2d_7': (batch_size, 5, 5, 512),
        'Conv2d_8': (batch_size, 3, 3, 256),
        'Conv2d_9': (batch_size, 2, 2, 256),
        'Conv2d_10': (batch_size, 1, 1, 128),
    }

    init_op = tf.compat.v1.global_variables_initializer()
    self.evaluate(init_op)

    feature_map_shapes = {}
    for feature_map in feature_maps.values():
      feature_map_shape = tf.shape(input=feature_map)
      feature_map_shapes[feature_map.op.name] = (
          feature_map_shape[0],
          feature_map_shape[1],
          feature_map_shape[2],
          feature_map_shape[3])

    self.assertDictEqual(feature_map_shapes, expected_feature_map_shapes)

if __name__ == '__main__':
  tf.test.main()

在这个例子中,我们首先导入了需要测试的SSDFeatureExtractorTest类。然后我们定义了一个继承自tf.test.TestCase的测试类SSDFeatureExtractorTestTest。在测试类中,我们定义了一个方法test_feature_maps_have_correct_shapes来测试特征图的形状是否正确。

在test_feature_maps_have_correct_shapes方法中,我们首先设置测试用的参数,例如batch_size、depth_multiplier等。然后我们创建了一个SSDFeatureExtractorTest对象feature_extractor。接下来,我们生成了一个随机的输入preprocessed_inputs,并调用feature_extractor的extract_features方法提取特征图。

然后,我们定义了一个期望的特征图形状expected_feature_map_shapes,然后初始化全局变量。

接下来,我们使用tf.shape函数获取每个特征图的形状,并将其保存在feature_map_shapes字典中。最后,我们使用self.assertDictEqual方法比较实际的特征图形状和期望的特征图形状是否一致。

最后,我们使用tf.test.main()运行测试。

这个单元测试的示例测试了SSDFeatureExtractorTest类中提取的特征图的形状是否正确。通过这个例子,您可以了解如何编写和运行针对特征提取器的单元测试。