使用Python编写的object_detection.models.ssd_feature_extractor_test特征提取器的单元测试
发布时间:2024-01-03 23:44:28
以下是一个针对object_detection.models.ssd_feature_extractor_test特征提取器的单元测试的例子:
import tensorflow as tf
from object_detection.models.ssd_feature_extractor_test import SSDFeatureExtractorTest
class SSDFeatureExtractorTestTest(tf.test.TestCase):
def test_feature_maps_have_correct_shapes(self):
batch_size = 2
depth_multiplier = 1.0
pad_to_multiple = 1
min_depth = 16
base_architecture = 'resnet_v1_50'
conv4_kernel_size = None
reuse_weights = None
feature_extractor = SSDFeatureExtractorTest(
is_training=True,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
base_architecture=base_architecture,
conv4_kernel_size=conv4_kernel_size,
reuse_weights=reuse_weights)
preprocessed_inputs = tf.random.uniform(
shape=(batch_size, 300, 300, 3),
minval=0,
maxval=255,
dtype=tf.float32)
feature_maps = feature_extractor.extract_features(preprocessed_inputs)
expected_feature_map_shapes = {
'Conv2d_3': (batch_size, 19, 19, 512),
'Conv2d_4': (batch_size, 10, 10, 1024),
'Conv2d_7': (batch_size, 5, 5, 512),
'Conv2d_8': (batch_size, 3, 3, 256),
'Conv2d_9': (batch_size, 2, 2, 256),
'Conv2d_10': (batch_size, 1, 1, 128),
}
init_op = tf.compat.v1.global_variables_initializer()
self.evaluate(init_op)
feature_map_shapes = {}
for feature_map in feature_maps.values():
feature_map_shape = tf.shape(input=feature_map)
feature_map_shapes[feature_map.op.name] = (
feature_map_shape[0],
feature_map_shape[1],
feature_map_shape[2],
feature_map_shape[3])
self.assertDictEqual(feature_map_shapes, expected_feature_map_shapes)
if __name__ == '__main__':
tf.test.main()
在这个例子中,我们首先导入了需要测试的SSDFeatureExtractorTest类。然后我们定义了一个继承自tf.test.TestCase的测试类SSDFeatureExtractorTestTest。在测试类中,我们定义了一个方法test_feature_maps_have_correct_shapes来测试特征图的形状是否正确。
在test_feature_maps_have_correct_shapes方法中,我们首先设置测试用的参数,例如batch_size、depth_multiplier等。然后我们创建了一个SSDFeatureExtractorTest对象feature_extractor。接下来,我们生成了一个随机的输入preprocessed_inputs,并调用feature_extractor的extract_features方法提取特征图。
然后,我们定义了一个期望的特征图形状expected_feature_map_shapes,然后初始化全局变量。
接下来,我们使用tf.shape函数获取每个特征图的形状,并将其保存在feature_map_shapes字典中。最后,我们使用self.assertDictEqual方法比较实际的特征图形状和期望的特征图形状是否一致。
最后,我们使用tf.test.main()运行测试。
这个单元测试的示例测试了SSDFeatureExtractorTest类中提取的特征图的形状是否正确。通过这个例子,您可以了解如何编写和运行针对特征提取器的单元测试。
