欢迎访问宙启技术站
智能推送

Python中使用GDT_Float32()进行图像识别的示例

发布时间:2024-01-03 18:57:47

在Python中,可以使用GDT_Float32()进行图像识别。以下是一个使用例子,该例子使用了卷积神经网络(Convolutional Neural Network,简称CNN)对手写数字图像进行识别。

首先,我们需要导入需要的库和模块:

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms

接下来,定义一个简单的CNN模型,该模型包含两个卷积层和两个全连接层:

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = nn.functional.relu(self.conv1(x))
        x = nn.functional.max_pool2d(x, 2)
        x = nn.functional.relu(self.conv2(x))
        x = nn.functional.max_pool2d(x, 2)
        x = x.view(-1, 320)
        x = nn.functional.relu(self.fc1(x))
        x = self.fc2(x)
        return nn.functional.log_softmax(x, dim=1)

然后,定义数据集的预处理方法:

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])

接着,加载训练集和测试集,并进行相应的预处理:

train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST('data', train=False, transform=transform)

train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1000, shuffle=False)

然后,创建模型的实例和优化器:

model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

定义训练函数,该函数通过交替进行前向传播和反向传播来更新模型的参数:

def train(model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = nn.functional.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

定义测试函数,该函数用于评估模型在测试集上的准确率:

def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += nn.functional.nll_loss(output, target, reduction='sum').item() 
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)

    print('
Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)
'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

最后,调用上述定义的函数进行模型的训练和测试:

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

for epoch in range(1, 11):
    train(model, device, train_loader, optimizer, epoch)
    test(model, device, test_loader)

以上就是使用GDT_Float32()进行图像识别的示例。该示例代码展示了如何使用CNN对手写数字进行识别,在MNIST数据集上进行了训练和测试。你可以根据需要调整模型的结构和参数,以及选择其他的数据集进行训练和测试。