使用AllenNLP中的weighted_sum()函数进行多标签分类任务
发布时间:2023-12-28 08:56:51
在AllenNLP中,weighted_sum()函数用于计算一个张量列表的加权和。该函数可以用于多标签分类任务,其中每个样本可能属于多个类别。
首先,我们需要准备数据和模型来演示如何使用weighted_sum()函数进行多标签分类。
1. 准备数据:
我们使用一个简单的示例数据集,其中包含一些文本样本和它们对应的标签。数据集如下所示:
[
{"text": "I love cats", "labels": {"animal": 1, "emotions": 0}},
{"text": "I hate dogs", "labels": {"animal": 1, "emotions": 1}},
{"text": "I like birds", "labels": {"animal": 1, "emotions": 0}}
]
2. 准备模型:
我们将使用一个简单的文本分类模型来演示如何使用weighted_sum()函数。模型结构如下所示:
TextFieldEmbedder -> Seq2VecEncoder -> FeedForward -> Linear -> Sigmoid
代码如下所示:
import torch
import torch.nn as nn
import torch.nn.functional as F
from allennlp.data.vocabulary import Vocabulary
from allennlp.models import Model
from allennlp.modules import TextFieldEmbedder, Seq2VecEncoder, FeedForward
from allennlp.modules.token_embedders import Embedding
from allennlp.nn import util
class TextClassifier(Model):
def __init__(self, vocab: Vocabulary,
embedder: TextFieldEmbedder,
encoder: Seq2VecEncoder,
feedforward: FeedForward):
super().__init__(vocab)
self.embedder = embedder
self.encoder = encoder
self.feedforward = feedforward
self.linear = nn.Linear(in_features=feedforward.get_output_dim(), out_features=vocab.get_vocab_size('labels'))
def forward(self, text, labels=None):
embedded_text = self.embedder(text)
encoded_text = self.encoder(embedded_text)
logits = self.feedforward(encoded_text)
output = self.linear(logits)
output = torch.sigmoid(output) # 多标签分类任务需要使用sigmoid函数将logits映射到[0, 1]范围
loss = None
if labels is not None:
loss = F.binary_cross_entropy_with_logits(output, labels)
return {'logits': output, 'loss': loss}
3. 计算加权和:
接下来,我们将演示如何使用weighted_sum()函数计算每个文本样本的加权和。代码如下所示:
import torch
from allennlp.data import TextFieldTensors
from allennlp.data.tokenizers import Tokenizer, WordTokenizer
from allennlp.data.token_indexers import SingleIdTokenIndexer
from allennlp.data.vocabulary import Vocabulary
from allennlp.data.dataset_readers import DatasetReader
from allennlp.data.fields import TextField, LabelField
from allennlp.data.samplers import RandomSampler
from allennlp.data.tokenizers import WhitespaceTokenizer
from allennlp.data.instance import Instance
from allennlp.data.data_loaders import SimpleDataLoader
from allennlp.nn.util import weighted_sum
from torch.nn import Linear
from allennlp.training.optimizers import AdamOptimizer
# 定义DatasetReader
class MyDatasetReader(DatasetReader):
def __init__(self, tokenizer: Tokenizer = WordTokenizer(), token_indexers=None):
super().__init__(lazy=False)
self.tokenizer = tokenizer
self.token_indexers = token_indexers or {'tokens': SingleIdTokenIndexer()}
def text_to_instance(self, text: str, labels: dict = None) -> Instance:
fields = {}
if text is not None:
tokens = self.tokenizer.tokenize(text)
fields["text"] = TextField(tokens, self.token_indexers)
if labels is not None:
fields["labels"] = LabelField(labels)
return Instance(fields)
def _read(self, file_path):
with open(file_path, 'r') as file:
lines = file.readlines()
for line in lines:
line = line.strip()
json_obj = json.loads(line)
text = json_obj["text"]
labels = json_obj["labels"]
yield self.text_to_instance(text, labels)
# 加载数据集
reader = MyDatasetReader(tokenizer=WhitespaceTokenizer())
train_dataset = reader.read('train_data.txt')
# 构建词汇表
vocab = Vocabulary.from_instances(train_dataset)
# 根据词汇表将文本转换为张量
train_dataset = train_dataset.map(lambda instance: instance.index_fields(vocab))
# 构建模型
token_embedding = Embedding(num_embeddings=vocab.get_vocab_size('tokens'), embedding_dim=300)
text_encoder = Seq2VecEncoder.by_name('lstm')(input_size=300, hidden_size=100, num_layers=2, bidirectional=True, dropout=0.2)
feedforward = FeedForward(input_dim=200, num_layers=2, hidden_dims=100, activations=F.relu)
text_classifier = TextClassifier(vocab=vocab,
embedder=token_embedding,
encoder=text_encoder,
feedforward=feedforward)
# 初始化数据加载器
data_loader = SimpleDataLoader(dataset=train_dataset,
batch_size=1,
shuffle=False,
sampler=RandomSampler(train_dataset))
# 初始化优化器
optimizer = AdamOptimizer(params=text_classifier.parameters())
# 训练模型并计算加权和
text_classifier.train()
for batch in data_loader:
optimizer.zero_grad()
outputs = text_classifier.forward(batch['text'], batch['labels'])
loss = outputs['loss']
loss.backward()
optimizer.step()
logits = outputs['logits']
weights = torch.tensor([0.8, 0.2]) # 假设有2个类别,权重分别为0.8和0.2
weighted_sum(logits, weights)
# 其他操作...
在上述示例中,我们首先创建了一个TextClassifier模型,并定义了该模型的网络结构。然后,我们使用MyDatasetReader来读取数据集,并根据数据集构建词汇表。之后,我们将文本转换为张量,并使用SimpleDataLoader和RandomSampler进行批量训练。在每个批次中,我们计算模型的输出,得到logits,然后使用weighted_sum()函数计算加权和。
以上是使用AllenNLP中的weighted_sum()函数进行多标签分类任务的一个示例。希望对您有所帮助!
