欢迎访问宙启技术站
智能推送

使用AllenNLP中的weighted_sum()函数进行多标签分类任务

发布时间:2023-12-28 08:56:51

在AllenNLP中,weighted_sum()函数用于计算一个张量列表的加权和。该函数可以用于多标签分类任务,其中每个样本可能属于多个类别。

首先,我们需要准备数据和模型来演示如何使用weighted_sum()函数进行多标签分类。

1. 准备数据:

我们使用一个简单的示例数据集,其中包含一些文本样本和它们对应的标签。数据集如下所示:

[
    {"text": "I love cats", "labels": {"animal": 1, "emotions": 0}},
    {"text": "I hate dogs", "labels": {"animal": 1, "emotions": 1}},
    {"text": "I like birds", "labels": {"animal": 1, "emotions": 0}}
]

2. 准备模型:

我们将使用一个简单的文本分类模型来演示如何使用weighted_sum()函数。模型结构如下所示:

TextFieldEmbedder -> Seq2VecEncoder -> FeedForward -> Linear -> Sigmoid

代码如下所示:

import torch
import torch.nn as nn
import torch.nn.functional as F
from allennlp.data.vocabulary import Vocabulary
from allennlp.models import Model
from allennlp.modules import TextFieldEmbedder, Seq2VecEncoder, FeedForward
from allennlp.modules.token_embedders import Embedding
from allennlp.nn import util

class TextClassifier(Model):
    def __init__(self, vocab: Vocabulary,
                 embedder: TextFieldEmbedder,
                 encoder: Seq2VecEncoder,
                 feedforward: FeedForward):
        super().__init__(vocab)
        self.embedder = embedder
        self.encoder = encoder
        self.feedforward = feedforward
        self.linear = nn.Linear(in_features=feedforward.get_output_dim(), out_features=vocab.get_vocab_size('labels'))
        
    def forward(self, text, labels=None):
        embedded_text = self.embedder(text)
        encoded_text = self.encoder(embedded_text)
        logits = self.feedforward(encoded_text)
        output = self.linear(logits)
        output = torch.sigmoid(output) # 多标签分类任务需要使用sigmoid函数将logits映射到[0, 1]范围
        loss = None
        if labels is not None:
            loss = F.binary_cross_entropy_with_logits(output, labels)
        
        return {'logits': output, 'loss': loss}

3. 计算加权和:

接下来,我们将演示如何使用weighted_sum()函数计算每个文本样本的加权和。代码如下所示:

import torch
from allennlp.data import TextFieldTensors
from allennlp.data.tokenizers import Tokenizer, WordTokenizer
from allennlp.data.token_indexers import SingleIdTokenIndexer
from allennlp.data.vocabulary import Vocabulary
from allennlp.data.dataset_readers import DatasetReader
from allennlp.data.fields import TextField, LabelField
from allennlp.data.samplers import RandomSampler
from allennlp.data.tokenizers import WhitespaceTokenizer
from allennlp.data.instance import Instance
from allennlp.data.data_loaders import SimpleDataLoader
from allennlp.nn.util import weighted_sum
from torch.nn import Linear
from allennlp.training.optimizers import AdamOptimizer

# 定义DatasetReader
class MyDatasetReader(DatasetReader):
    def __init__(self, tokenizer: Tokenizer = WordTokenizer(), token_indexers=None):
        super().__init__(lazy=False)
        self.tokenizer = tokenizer
        self.token_indexers = token_indexers or {'tokens': SingleIdTokenIndexer()}

    def text_to_instance(self, text: str, labels: dict = None) -> Instance:
        fields = {}
        if text is not None:
            tokens = self.tokenizer.tokenize(text)
            fields["text"] = TextField(tokens, self.token_indexers)
        if labels is not None:
            fields["labels"] = LabelField(labels)
        return Instance(fields)

    def _read(self, file_path):
        with open(file_path, 'r') as file:
            lines = file.readlines()
            for line in lines:
                line = line.strip()
                json_obj = json.loads(line)
                text = json_obj["text"]
                labels = json_obj["labels"]
                yield self.text_to_instance(text, labels)

# 加载数据集
reader = MyDatasetReader(tokenizer=WhitespaceTokenizer())
train_dataset = reader.read('train_data.txt')

# 构建词汇表
vocab = Vocabulary.from_instances(train_dataset)

# 根据词汇表将文本转换为张量
train_dataset = train_dataset.map(lambda instance: instance.index_fields(vocab))

# 构建模型
token_embedding = Embedding(num_embeddings=vocab.get_vocab_size('tokens'), embedding_dim=300)
text_encoder = Seq2VecEncoder.by_name('lstm')(input_size=300, hidden_size=100, num_layers=2, bidirectional=True, dropout=0.2)
feedforward = FeedForward(input_dim=200, num_layers=2, hidden_dims=100, activations=F.relu)

text_classifier = TextClassifier(vocab=vocab,
                                 embedder=token_embedding,
                                 encoder=text_encoder,
                                 feedforward=feedforward)

# 初始化数据加载器
data_loader = SimpleDataLoader(dataset=train_dataset,
                               batch_size=1,
                               shuffle=False,
                               sampler=RandomSampler(train_dataset))

# 初始化优化器
optimizer = AdamOptimizer(params=text_classifier.parameters())

# 训练模型并计算加权和
text_classifier.train()
for batch in data_loader:
    optimizer.zero_grad()
    outputs = text_classifier.forward(batch['text'], batch['labels'])
    loss = outputs['loss']
    loss.backward()
    optimizer.step()
    logits = outputs['logits']

    weights = torch.tensor([0.8, 0.2])  # 假设有2个类别,权重分别为0.8和0.2
    weighted_sum(logits, weights)

    # 其他操作...

在上述示例中,我们首先创建了一个TextClassifier模型,并定义了该模型的网络结构。然后,我们使用MyDatasetReader来读取数据集,并根据数据集构建词汇表。之后,我们将文本转换为张量,并使用SimpleDataLoaderRandomSampler进行批量训练。在每个批次中,我们计算模型的输出,得到logits,然后使用weighted_sum()函数计算加权和。

以上是使用AllenNLP中的weighted_sum()函数进行多标签分类任务的一个示例。希望对您有所帮助!