欢迎访问宙启技术站
智能推送

使用TensorFlow中的googletestmain()函数进行性能测试

发布时间:2023-12-24 21:37:31

Google Test是一个流行的C++测试框架,用于编写单元测试、集成测试和性能测试。而googletestmain()函数是Google Test提供的一个用于运行测试的主函数。

在TensorFlow中,我们可以使用googletestmain()函数来编写和运行性能测试。以下是一个简单的例子,用于对TensorFlow中的矩阵乘法操作进行性能测试。

首先,我们需要引入TensorFlow的相关头文件和googletest的头文件。代码如下:

#include "tensorflow/core/platform/test.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/shape_inference_testutil.h"
#include "tensorflow/core/framework/numeric_types.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/platform/types.h"
#include "tensorflow/core/lib/gtl/array_slice.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/op_kernel_test_util.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/lib/core/blocking_counter.h"
#include "tensorflow/core/lib/core/threadpool.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/platform/cpu_info.h"
#include "tensorflow/core/platform/thread_annotations.h"
#include "tensorflow/core/util/env_var.h"
#include "tensorflow/core/util/tensor_format.h"
#include "tensorflow/core/util/tensor_slice_reader.h"
#include "tensorflow/core/util/tensor_slice_writer.h"

#include <iostream>
#include <random>

然后,我们在代码中定义一个执行矩阵乘法操作的函数,并使用该函数进行性能测试。代码如下:

void MatrixMultiplication(const tensorflow::Tensor& mat1, const tensorflow::Tensor& mat2, tensorflow::Tensor* output) {
  const int64 m = mat1.dim_size(0);
  const int64 k = mat1.dim_size(1);
  const int64 n = mat2.dim_size(1);

  tensorflow::TensorShape output_shape({m, n});
  OP_REQUIRES_OK(context, context->allocate_output(0, output_shape, &output));

  auto mat1_data = mat1.flat<float>().data();
  auto mat2_data = mat2.flat<float>().data();
  auto output_data = output->flat<float>().data();

  for (int64 i = 0; i < m; ++i) {
    for (int64 j = 0; j < n; ++j) {
      float sum = 0.0;
      for (int64 kk = 0; kk < k; ++kk) {
        sum += mat1_data[i * k + kk] * mat2_data[kk * n + j];
      }
      output_data[i * n + j] = sum;
    }
  }
}

Test(MatrixMultiplicationPerformance) {
  tensorflow::TensorShape shape({1000, 1000});
  tensorflow::Tensor mat1(tensorflow::DT_FLOAT, shape);
  tensorflow::Tensor mat2(tensorflow::DT_FLOAT, shape);
  tensorflow::Tensor output;

  std::random_device rd;
  std::mt19937 gen(rd());
  std::uniform_real_distribution<> dis(0, 1);

  auto mat1_data = mat1.flat<float>().data();
  auto mat2_data = mat2.flat<float>().data();

  for (int64 i = 0; i < 1000; ++i) {
    for (int64 j = 0; j < 1000; ++j) {
      mat1_data[i * 1000 + j] = dis(gen);
      mat2_data[i * 1000 + j] = dis(gen);
    }
  }

  tensorflow::testing::ItemsProcessed perftest;
  for (int i = 0; i < 100; ++i) {
    perftest.Start();
    MatrixMultiplication(mat1, mat2, &output);
    perftest.Stop();
  }

  std::cout << "Average time (ms): " << perftest.avg_time_ms() << std::endl;
  std::cout << "Items processed per second: " << perftest.items_per_second() << std::endl;
}

在上述代码中,我们首先生成两个随机的1000x1000矩阵,并使用MatrixMultiplication函数执行矩阵乘法操作。然后,我们使用googletest提供的ItemsProcessed类来进行性能测试,重复运行100次并统计平均耗时和每秒处理的项数。

最后,我们输出性能测试的结果。

要运行以上代码,我们需要将其放入一个名为matrix_multiplication_performance_test.cc的文件中,并使用Bazel或CMake等构建工具进行编译和运行。

参考链接:

- TensorFlow官方文档: https://www.tensorflow.org/api_docs/cc/group/performance

- Google Test官方文档:https://github.com/google/googletest

- TensorFlow GitHub仓库:https://github.com/tensorflow/tensorflow