使用nets.mobilenet_v1进行图像风格转换的代码示例
import tensorflow as tf
import tensorflow_hub as hub
import numpy as np
import PIL.Image as Image
# Load the pre-trained MobileNet V1 model
module = hub.Module("https://tfhub.dev/google/imagenet/mobilenet_v1_100_224/feature_vector/1")
# Define the model for style transfer
def style_transfer(content_image_path, style_image_path, output_image_path):
# Load and preprocess the content and style images
content_image = Image.open(content_image_path).resize((224, 224))
content_image = np.array(content_image) / 255.0
content_image = np.expand_dims(content_image, axis=0)
style_image = Image.open(style_image_path).resize((224, 224))
style_image = np.array(style_image) / 255.0
style_image = np.expand_dims(style_image, axis=0)
# Convert the images to tensors
content_image_tensor = tf.placeholder(tf.float32, shape=(None, 224, 224, 3))
style_image_tensor = tf.placeholder(tf.float32, shape=(None, 224, 224, 3))
# Generate the content and style feature vectors
content_features = module(content_image_tensor)
style_features = module(style_image_tensor)
# Define the loss function
style_loss = tf.reduce_mean(tf.square(content_features - style_features))
# Define the optimizer
optimizer = tf.train.AdamOptimizer(learning_rate=0.01)
train_op = optimizer.minimize(style_loss)
# Initialize the TensorFlow session
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
# Perform style transfer
for i in range(1000):
sess.run(train_op, feed_dict={content_image_tensor: content_image, style_image_tensor: style_image})
if i % 100 == 0:
loss = sess.run(style_loss, feed_dict={content_image_tensor: content_image, style_image_tensor: style_image})
print("Loss at iteration {}: {}".format(i, loss))
# Save the stylized image
stylized_image = sess.run(content_image_tensor, feed_dict={content_image_tensor: content_image, style_image_tensor: style_image})
stylized_image = np.squeeze(stylized_image)
stylized_image = Image.fromarray(np.uint8(stylized_image * 255))
stylized_image.save(output_image_path)
# Example usage
style_transfer("content.jpg", "style.jpg", "output.jpg")
