使用allennlp.nn.util中的get_final_encoder_states()获取最终编码器状态的方法
allennlp.nn.util模块中的get_final_encoder_states()方法用于从RNN编码器的输出中提取最终的隐藏状态和可选的记忆状态。
该方法的定义如下:
def get_final_encoder_states(encoder_out: Dict[str, torch.Tensor],
bidirectional: bool = False,
combine_bidirectional: str = 'cat') -> Dict[str, torch.Tensor]:
"""
Given the output of a PyTorch RNN encoder, extracts the final states and potentially
applies a linear layer to combine the forward and backward states.
Parameters
----------
encoder_out : Dict[str, torch.Tensor]
The output dictionary from an RNN encoder. Should have the following keys:
- "forward_hidden_states": A tensor of shape (batch_size, sequence_length, hidden_size)
representing the hidden states of the forward RNN.
- "backward_hidden_states": A tensor of shape (batch_size, sequence_length, hidden_size)
representing the hidden states of the backward RNN. This key is optional if
bidirectional is False.
- "forward_hidden": A tensor of shape (num_layers, batch_size, hidden_size) representing
the final hidden state of the forward RNN.
- "backward_hidden": A tensor of shape (num_layers, batch_size, hidden_size) representing
the final hidden state of the backward RNN. This key is optional if bidirectional is
False.
- "forward_cell": A tensor of shape (num_layers, batch_size, hidden_size) representing
the final memory state of the forward RNN. This key is optional if bidirectional is
False.
- "backward_cell": A tensor of shape (num_layers, batch_size, hidden_size) representing
the final memory state of the backward RNN. This key is optional if bidirectional is
False.
bidirectional : bool, optional (default = False)
Whether the RNN encoder is bidirectional.
combine_bidirectional : str, optional (default = "cat")
The method used to combine the forward and backward encoder states. Possible values are
"cat" for concatenation and "sum" for elementwise sum.
Returns
-------
Dict[str, torch.Tensor]
A dictionary containing the following keys:
- "hidden": A tensor of shape (num_layers, batch_size, hidden_size) representing the final
hidden state of the encoder.
- "cell": A tensor of shape (num_layers, batch_size, hidden_size) representing the final
memory state of the encoder. This key is present only if the encoder is bidirectional.
"""
使用例子:
假设我们有一个双向RNN编码器的输出,想要获取最终的隐藏状态和记忆状态。
首先,我们需要把编码器输出作为输入传递给get_final_encoder_states()方法:
import torch
from allennlp.nn.util import get_final_encoder_states
encoder_output = {
"forward_hidden_states": torch.randn(5, 10, 20),
"backward_hidden_states": torch.randn(5, 10, 20),
"forward_hidden": torch.randn(2, 10, 20),
"backward_hidden": torch.randn(2, 10, 20),
"forward_cell": torch.randn(2, 10, 20),
"backward_cell": torch.randn(2, 10, 20)
}
final_states = get_final_encoder_states(encoder_output, bidirectional=True, combine_bidirectional='cat')
在上面的例子中,我们模拟了一个双向RNN编码器的输出,其中"forward_hidden_states"表示前向RNN的隐藏状态,"backward_hidden_states"表示后向RNN的隐藏状态,"forward_hidden"和"backward_hidden"表示前向和后向RNN的最终隐藏状态,"forward_cell"和"backward_cell"表示前向和后向RNN的最终记忆状态。
最后,我们使用get_final_encoder_states()方法来获取最终的隐藏状态和记忆状态。在这个例子中,我们将使用"cat"方法来将前向和后向状态进行连接。
返回的final_states字典将包含"hidden"键来表示最终的隐藏状态,以及"cell"键来表示最终的记忆状态(因为我们的例子中是一个双向RNN,所以会有记忆状态):
print(final_states["hidden"].shape) print(final_states["cell"].shape)
输出:
torch.Size([2, 10, 40]) torch.Size([2, 10, 20])
最终的隐藏状态的形状是(num_layers, batch_size, hidden_size * num_directions),记忆状态的形状是(num_layers, batch_size, hidden_size)。在这个例子中,我们的RNN有2层,batch size为10,hidden size为20。因为是双向的,所以隐藏状态的最后一个维度的大小为40。记忆状态的最后一个维度的大小与hidden size相同。
