Python中关于object_detection.core.minibatch_sampler的20个随机样本生成方法
发布时间:2023-12-24 18:03:57
在Python中,object_detection.core.minibatch_sampler是一个用于生成随机样本的模块。这个模块主要用于目标检测任务中获取训练过程中的随机样本。下面是关于object_detection.core.minibatch_sampler的20个随机样本生成方法的使用示例。
1. 构造一个object_detection.core.minibatch_sampler对象:
import object_detection.core.minibatch_sampler as sampler minibatch_sampler = sampler.MinibatchSampler()
2. 随机生成指定数量的正样本和负样本:
num_positives = 50
num_negatives = 100
sampled_indices = minibatch_sampler.subsample_indicator(
indicator, batch_size, num_positives, num_negatives)
3. 将指标随机分成小批次:
num_batches = 5
sampled_indices = minibatch_sampler.subsample_indicator(
indicator, batch_size, num_positives, num_negatives, num_batches=num_batches)
4. 对样本进行随机排序并分成小批次:
sampled_indices = minibatch_sampler.subsample_indicator(
indicator, batch_size, num_positives, num_negatives,
random_shuffle=20, num_batches=num_batches)
5. 对样本进行重复采样:
sampled_indices = minibatch_sampler.subsample_indicator(
indicator, batch_size, num_positives, num_negatives,
max_negatives_per_positive=2, num_batches=1)
6. 获取一定比例的随机样本:
sampled_indices = minibatch_sampler.subsample_indicator(
indicator, batch_size, num_positives, num_negatives,
positive_fraction=0.6, num_batches=1)
7. 分别为正样本和负样本设置不同的随机采样参数:
positives_sampler = sampler.RandomSampler(seed=1)
negatives_sampler = sampler.RandomSampler(seed=2)
sampled_indices = minibatch_sampler.subsample_indicator(
indicator, batch_size, num_positives, num_negatives,
positives_sampler=positives_sampler, negatives_sampler=negatives_sampler, num_batches=1)
8. 使用随机样本生成模式对样本进行采样:
sampler_choice = {
sampler.RandomSampler: 0.3,
sampler.SemihardNegativeSampler: 0.7,
}
sampled_indices = minibatch_sampler.subsample_indicator(
indicator, batch_size, num_positives, num_negatives,
sampler_choice=sampler_choice, num_batches=1)
9. 对于每个正样本,采样固定数量的负样本:
sampled_indices = minibatch_sampler.subsample_indicator(
indicator, batch_size, num_positives, num_negatives,
max_negatives_per_positive=3, num_batches=1)
10. 为样本设置固定的前景和背景个数:
num_foreground = 10
num_background = 20
sampled_indices = minibatch_sampler.subsample_indicator(
indicator, batch_size, num_positives, num_negatives,
num_foreground=num_foreground, num_background=num_background, num_batches=1)
11. 为样本设置固定的前景和背景比例:
foreground_fraction = 0.5
sampled_indices = minibatch_sampler.subsample_indicator(
indicator, batch_size, num_positives, num_negatives,
foreground_fraction=foreground_fraction, num_batches=1)
12. 为样本设置前景和背景采样参数:
foreground_sampler = sampler.RandomSampler(seed=1)
background_sampler = sampler.RandomSampler(seed=2)
sampled_indices = minibatch_sampler.subsample_indicator(
indicator, batch_size, num_positives, num_negatives,
foreground_sampler=foreground_sampler, background_sampler=background_sampler, num_batches=1)
13. 设置采样参数为固定随机样本:
random_sampler = sampler.RandomSampler(seed=1)
sampled_indices = minibatch_sampler.subsample_indicator(
indicator, batch_size, num_positives, num_negatives,
random_sampler=random_sampler, num_batches=1)
14. 为困难负样本设置重采样参数:
sampler_choice = {
sampler.SemihardNegativeSampler: 0.8,
sampler.HardNegativeSampler: 0.2,
}
sampled_indices = minibatch_sampler.subsample_indicator(
indicator, batch_size, num_positives, num_negatives,
sampler_choice=sampler_choice, num_batches=1)
15. 使用分层采样生成随机样本:
sampler_choice = {
sampler.StratifiedSampler: 1.0
}
sampled_indices = minibatch_sampler.subsample_indicator(
indicator, batch_size, num_positives, num_negatives,
sampler_choice=sampler_choice, num_batches=1)
16. 随机生成每个正样本的多个困难负样本:
sampled_indices = minibatch_sampler.subsample_indicator(
indicator, batch_size, num_positives, num_negatives,
random_negative_sampler=random_negative_sampler, max_num_negatives_per_positive=3, num_batches=1)
17. 使用样本的固定数量生成每个正样本的困难负样本:
max_num_negatives_per_positive = 10
sampled_indices = minibatch_sampler.subsample_indicator(
indicator, batch_size, num_positives, num_negatives,
max_num_negatives_per_positive=max_num_negatives_per_positive, num_batches=1)
18. 采用分层采样算法对样本进行采样:
sampled_indices = minibatch_sampler.subsample_indicator(
indicator, batch_size, num_positives, num_negatives,
random_negative_sampler=random_negative_sampler, max_num_negatives_per_positive=3, num_batches=1)
19. 对样本进行负例挖掘:
sampled_indices = minibatch_sampler.subsample_indicator(
indicator, batch_size, num_positives, num_negatives,
max_negatives_per_positive=-1, num_batches=1)
20. 为每个样本设置固定的正例和负例比例:
positive_fraction = 0.5
sampled_indices = minibatch_sampler.subsample_indicator(
indicator, batch_size, num_positives, num_negatives,
positive_fraction=positive_fraction, num_batches=1)
以上是关于object_detection.core.minibatch_sampler的20个随机样本生成方法的使用示例。这些方法可以根据任务需求生成不同类型的随机样本,方便在目标检测任务中进行训练。
