object_detection.protos.model_pb2中的常用函数解析
在object_detection.protos.model_pb2中,常用的函数有:
1. def Model():
该函数创建并返回一个新的Model对象。
Example:
model = model_pb2.Model()
2. def populate_from_label_map(categories):
该函数将给定的标签映射列表categories填充到当前模型的label_map字段中。
Example:
categories = [{'id': 1, 'name': 'cat'}, {'id': 2, 'name':'dog'}]
model.populate_from_label_map(categories)
3. def serialize_to_string():
该函数将当前模型转换为字符串。
Example:
model = model_pb2.Model() ... serialized_model = model.serialize_to_string()
4. def parse_from_string(serialized):
该函数从给定的字符串serialized中解析模型,并返回解析后的模型。
Example:
serialized_model = b' \x0e \x03cat\x10\x01 \x0b \x03dog\x10\x02' model = model_pb2.Model.parse_from_string(serialized_model)
5. def add_ssd(num_classes, image_resizer, feature_extractor, box_predictor, anchor_generator, box_coder, matcher, similarity_calculator, encode_background_as_zeros=True, normalize_loss_by_num_matches=True)
该函数向当前模型中添加一个SSD相关设置,并返回新添加的SSD对象。
Example:
ssd_model = model_pb2.Model.add_ssd(num_classes=2, image_resizer=image_resizer, feature_extractor=feature_extractor, box_predictor=box_predictor, anchor_generator=anchor_generator, box_coder=box_coder, matcher=matcher, similarity_calculator=similarity_calculator)
6. def add_rfcn(num_classes, image_resizer, feature_extractor, box_coder, normalize_loss_by_num_matches=True)
该函数向当前模型中添加一个RFCN (Region-based Fully Convolutional Networks)相关设置,并返回新添加的RFCN对象。
Example:
rfcn_model = model_pb2.Model.add_rfcn(num_classes=2, image_resizer=image_resizer, feature_extractor=feature_extractor, box_coder=box_coder)
这些是object_detection.protos.model_pb2中的一些常用函数及其使用例子,希望能对你有所帮助。
