欢迎访问宙启技术站
智能推送

使用embedding_ops模块进行中文文本的情感极性分析

发布时间:2023-12-24 03:48:41

在进行中文文本的情感极性分析时,可以使用embedding_ops模块来生成词向量,并使用这些词向量进行情感分析。下面是一个例子,展示了如何使用embedding_ops模块进行中文文本的情感极性分析。

首先,需要准备一个具有标记的情感极性数据集,以便训练模型。可以使用一些已标记的中文情感极性数据集,例如THUCNews情感分类数据集。

1. 导入必要的库和模块:

import tensorflow as tf
import numpy as np
from tensorflow.contrib import learn
from tensorflow.contrib import layers
from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib
from tensorflow.contrib.tensorboard.plugins import projector
import jieba

2. 定义准备中文文本数据的函数:

def chinese_tokenizer(text):
    # 使用jieba进行分词
    return list(jieba.cut(text, cut_all=False))

def prepare_data():
    # 读取训练数据和标签
    x_text = []
    y_labels = []
    with open('./data/train.txt', 'r', encoding='utf-8') as f:
        for line in f:
            parts = line.strip().split('\t')
            x_text.append(parts[0])
            y_labels.append(int(parts[1]))
    
    # 创建和处理词汇表
    max_document_length = max([len(x.split(' ')) for x in x_text])
    vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length, tokenizer_fn=chinese_tokenizer)
    x_text = np.array(list(vocab_processor.fit_transform(x_text)))
    y_labels = np.array(y_labels)
    num_classes = len(np.unique(y_labels))
    
    # 划分训练集和验证集
    x_train, x_val, y_train, y_val = train_test_split(x_text, y_labels, test_size=0.2, random_state=42)
    
    return x_train, y_train, x_val, y_val, num_classes, max_document_length, vocab_processor

3. 定义模型函数:

def model_fn(features, labels, mode):
    input_layer = layers.embed_sequence(
        features, vocab_size=num_vocab, embed_dim=embedding_dim, scope='words')

    # 创建一个LSTM层
    cell = tf.nn.rnn_cell.LSTMCell(num_units=hidden_units)

    outputs, state = tf.nn.dynamic_rnn(cell, input_layer, dtype=tf.float32)

    # 提取LSTM最后一个状态的输出
    last_output = outputs[:, -1, :]

    logits = layers.fully_connected(last_output, num_classes, activation_fn=None)
    predicted_classes = tf.argmax(logits, 1)
    if mode == tf.estimator.ModeKeys.PREDICT:
        predictions = {
            'class': predicted_classes,
            'prob': tf.nn.softmax(logits)
        }
        return model_fn_lib.EstimatorSpec(mode, predictions)

    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)

    if mode == tf.estimator.ModeKeys.TRAIN:
        train_op = tf.contrib.layers.optimize_loss(
            loss,
            tf.contrib.framework.get_global_step(),
            optimizer='Adam',
            learning_rate=0.01)
        return model_fn_lib.EstimatorSpec(mode, loss=loss, train_op=train_op)

    eval_metric_ops = {
        'accuracy': tf.metrics.accuracy(labels=labels, predictions=predicted_classes)
    }
    return model_fn_lib.EstimatorSpec(mode, loss=loss, eval_metric_ops=eval_metric_ops)

4. 定义训练函数:

def train_model(x_train, y_train, x_val, y_val, num_classes, max_document_length, vocab_processor):
    # 创建Embedding
    global num_vocab, embedding_dim, hidden_units
    num_vocab = len(vocab_processor.vocabulary_)
    embedding_dim = 128
    hidden_units = 128
    word2vec = tf.contrib.layers.embed_sequence(
        x_train, vocab_size=num_vocab, embed_dim=embedding_dim, scope='words')
    word2vec = tf.expand_dims(word2vec, -1)

    # 创建模型
    model_params = {"num_vocab": num_vocab, "embedding_dim": embedding_dim, "hidden_units": hidden_units, "num_classes": num_classes}
    classifier = learn.Estimator(model_fn=model_fn, params=model_params)

    # 创建log配置
    hooks = [
        tf.contrib.tensorboard.plugins.projector.ProjectorHook(
            embedding_ops.word2vec.visualization.tensor_name,
            embedding_ops.word2vec.visualization.metadata_path)
    ]

    # 训练模型
    classifier.fit(word2vec, y_train, steps=1000, batch_size=128, monitors=hooks)

    # 评估模型
    accuracy_score = classifier.evaluate(x=x_val, y=y_val)["accuracy"]
    print('Accuracy: {0:f}'.format(accuracy_score))

5. 运行模型:

# 准备数据
x_train, y_train, x_val, y_val, num_classes, max_document_length, vocab_processor = prepare_data()

# 训练和评估模型
train_model(x_train, y_train, x_val, y_val, num_classes, max_document_length, vocab_processor)

这个例子使用了TensorFlow的embedding_ops模块,通过训练一个LSTM文本分类器,实现了中文文本的情感极性分析。在训练过程中,使用了THUCNews情感分类数据集,通过使用embedding_ops模块生成词向量,并结合LSTM模型进行训练和评估。

希望这个例子能帮助你理解如何使用embedding_ops模块进行中文文本的情感极性分析。