Python中利用object_detection.utils.learning_schedulesexponential_decay_with_burnin()函数设计的指数衰减学习率生成方法
发布时间:2023-12-23 10:24:33
object_detection.utils.learning_schedules模块中的exponential_decay_with_burnin()函数是一个用于生成指数衰减学习率的方法。它可以根据指定的参数设置,生成一个学习率变化曲线,以便在训练过程中逐渐降低学习率的大小。
这个函数的定义如下:
def exponential_decay_with_burnin(global_step,
learning_rate_base,
learning_rate_decay_steps,
learning_rate_decay_factor,
burnin_learning_rate=0.1,
burnin_steps=0,
name=None):
"""Applies exponential decay to the learning rate.
This function applies exponential decay to the learning rate.
This scheduling applies a burn-in factor to the learning rate for a fixed
period at the beginning of training. In other words, during the burn-in
stage, the learning rate starts at burnin_learning_rate, and then
gradually increases to learning_rate_base. After the burn-in phase,
the learning rate is decayed exponentially.
Args:
global_step: global_step tensor.
learning_rate_base: base learning rate.
learning_rate_decay_steps: learning rate decay steps.
learning_rate_decay_factor: learning rate decay factor.
burnin_learning_rate: burn-in learning rate.
burnin_steps: burn-in steps.
name: Optional name scope for the operations.
Returns:
a scalar tensor representing learning rate
"""
下面是一个使用exponential_decay_with_burnin()函数生成指数衰减学习率的例子:
import tensorflow as tf
from object_detection.utils.learning_schedules import exponential_decay_with_burnin
# 定义超参数
learning_rate_base = 0.1
learning_rate_decay_steps = 1000
learning_rate_decay_factor = 0.1
burnin_learning_rate = 0.01
burnin_steps = 100
# 定义global_step变量
global_step = tf.Variable(0, trainable=False)
# 调用exponential_decay_with_burnin()函数生成学习率变化曲线
learning_rate = exponential_decay_with_burnin(global_step,
learning_rate_base,
learning_rate_decay_steps,
learning_rate_decay_factor,
burnin_learning_rate,
burnin_steps)
# 添加一个操作来增加global_step
increment_step = tf.assign_add(global_step, 1)
# 创建Session并初始化变量
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# 打印每个global_step和对应的学习率
for step in range(2000):
lr = sess.run(learning_rate)
print("Step: {}, Learning Rate: {:.6f}".format(step, lr))
sess.run(increment_step)
这个例子中,我们定义了一些超参数:learning_rate_base表示初始的学习率大小,learning_rate_decay_steps表示学习率衰减的步数,learning_rate_decay_factor表示学习率的衰减率。
我们还定义了burn-in阶段的学习率:burnin_learning_rate和burnin_steps,前者表示burn-in阶段的学习率大小,后者表示burn-in的步数。
然后,我们定义了一个global_step变量,并调用exponential_decay_with_burnin()函数来生成学习率变化曲线。在每一轮中,我们打印当前步数和对应的学习率,并增加global_step的值。
最后,我们创建了一个Session,并通过这个Session来运行程序。在每一次迭代中,我们都会打印出相应的步数和学习率。
这样就完成了一个使用exponential_decay_with_burnin()函数生成指数衰减学习率的例子。通过调整超参数,可以得到不同形状的学习率变化曲线,以满足具体的训练需求。
