如何使用object_detection.data_decoders.tf_example_decoderTfExampleDecoder()解码TFRecord格式数据
发布时间:2023-12-23 03:28:47
object_detection.data_decoders.tf_example_decoder.TfExampleDecoder是TensorFlow Object Detection API中用于解码TFRecord格式数据的类。TFRecord是一种用于高效存储和读取大型数据集的二进制文件格式。
下面是使用object_detection.data_decoders.tf_example_decoder.TfExampleDecoder解码TFRecord格式数据的步骤:
1. 首先,导入所需的模块和类:
from object_detection.data_decoders.tf_example_decoder import TfExampleDecoder
2. 创建TfExampleDecoder的实例:
decoder = TfExampleDecoder()
3. 定义TFRecord的特征键名称和特征类型:
keys_to_features = {
'image/encoded': tf.FixedLenFeature((), tf.string),
'image/format': tf.FixedLenFeature((), tf.string),
'image/height': tf.FixedLenFeature((), tf.int64),
'image/width': tf.FixedLenFeature((), tf.int64),
'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32),
'image/object/class/label': tf.VarLenFeature(dtype=tf.int64),
}
4. 调用TfExampleDecoder的decode方法解码TFRecord格式数据,传入TFRecord数据和特征键名称:
decoded_tensors = decoder.decode(tfrecord_data, keys_to_features)
5. 解码后,可以通过解码后的张量访问解码的数据:
image = decoded_tensors['image'] width = decoded_tensors['image_width'] height = decoded_tensors['image_height'] xmin = decoded_tensors['image/object/bbox/xmin'] ymin = decoded_tensors['image/object/bbox/ymin'] xmax = decoded_tensors['image/object/bbox/xmax'] ymax = decoded_tensors['image/object/bbox/ymax'] labels = decoded_tensors['image/object/class/label']
下面是一个完整的使用例子:
from object_detection.data_decoders.tf_example_decoder import TfExampleDecoder
# 创建TfExampleDecoder实例
decoder = TfExampleDecoder()
# 定义TFRecord的特征键名称和特征类型
keys_to_features = {
'image/encoded': tf.FixedLenFeature((), tf.string),
'image/format': tf.FixedLenFeature((), tf.string),
'image/height': tf.FixedLenFeature((), tf.int64),
'image/width': tf.FixedLenFeature((), tf.int64),
'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32),
'image/object/class/label': tf.VarLenFeature(dtype=tf.int64),
}
# 解码TFRecord格式数据
decoded_tensors = decoder.decode(tfrecord_data, keys_to_features)
# 访问解码的数据
image = decoded_tensors['image']
width = decoded_tensors['image_width']
height = decoded_tensors['image_height']
xmin = decoded_tensors['image/object/bbox/xmin']
ymin = decoded_tensors['image/object/bbox/ymin']
xmax = decoded_tensors['image/object/bbox/xmax']
ymax = decoded_tensors['image/object/bbox/ymax']
labels = decoded_tensors['image/object/class/label']
这是使用object_detection.data_decoders.tf_example_decoder.TfExampleDecoder解码TFRecord格式数据的基本步骤和含义。通过解码后的张量可以访问解码的数据,例如图像、边界框位置和类别标签等。根据实际情况,可以根据自己的需求定义特征键名称和特征类型。
