object_detection.core.anchor_generator模块在Python中的随机生成策略
The object_detection.core.anchor_generator module in Python provides various methods for generating anchor boxes for object detection tasks. Anchor boxes are predefined bounding boxes of different scales and aspect ratios that are used to match with the ground truth bounding boxes during the training and inference process. These anchor boxes help in capturing objects of different sizes and aspect ratios in an image.
Let's dive into some of the random anchor generation strategies provided by the anchor_generator module and understand how to use them with an example.
1. anchor_generator_builder:
The anchor_generator_builder is a function that takes the anchor_generator_config and returns an instance of the anchor_generator class based on the configuration. We need to import this function to build the anchor generator.
Example:
from object_detection.core import anchor_generator
from object_detection.protos import anchor_generator_pb2
# Create anchor generator config
anchor_gen_config = anchor_generator_pb2.AnchorGenerator(
aspect_ratios=[0.5, 1.0, 2.0],
scales=[0.1, 0.5, 1.0]
)
# Build the anchor generator
anchor_gen = anchor_generator_builder.build(anchor_gen_config)
In this example, we create an anchor generator config with three aspect ratios (0.5, 1.0, and 2.0) and three scales (0.1, 0.5, and 1.0). Then, we use the anchor_generator_builder function to build the anchor generator instance.
2. anchor_generator.AnchorGeneratorRandom:
anchor_generator.AnchorGeneratorRandom is a class that randomly generates anchors based on the given aspect ratios and scales. It randomly samples anchor boxes with different aspect ratios and scales from the anchor stride.
Example:
from object_detection.core import anchor_generator
# Define parameters for anchor generation
anchor_stride = [16, 16]
scales = [0.5, 1.0, 2.0]
aspect_ratios = [0.5, 1.0, 2.0]
# Create anchor generator
anchor_gen_random = anchor_generator.AnchorGeneratorRandom(
anchor_stride=anchor_stride,
scales=scales,
aspect_ratios=aspect_ratios
)
# Generate anchors for an image of size (height, width)
height = 800
width = 800
anchors = anchor_gen_random.generate_anchors(image_height=height, image_width=width)
print(anchors)
In this example, we create an instance of the anchor_generator.AnchorGeneratorRandom class with the anchor stride, scales, and aspect ratios. Then, we generate anchors by providing the image height and width as parameters to the generate_anchors method. The anchors are stored in a list and printed.
3. anchor_generator.AnchorGeneratorRandomGrid:
anchor_generator.AnchorGeneratorRandomGrid is another class that generates anchor boxes on a grid based on the given aspect ratios and scales. It randomly selects an anchor within each grid cell and applies the aspect ratio and scale to it.
Example:
from object_detection.core import anchor_generator
# Define parameters for anchor generation
anchor_stride = [16, 16]
scales = [0.5, 1.0, 2.0]
aspect_ratios = [0.5, 1.0, 2.0]
# Create anchor generator
anchor_gen_random_grid = anchor_generator.AnchorGeneratorRandomGrid(
anchor_stride=anchor_stride,
scales=scales,
aspect_ratios=aspect_ratios
)
# Generate anchors for an image of size (height, width)
height = 800
width = 800
anchors = anchor_gen_random_grid.generate_anchors(image_height=height, image_width=width)
print(anchors)
In this example, we create an instance of the anchor_generator.AnchorGeneratorRandomGrid class with the anchor stride, scales, and aspect ratios. Then, we generate anchors by providing the image height and width as parameters to the generate_anchors method. The anchors are stored in a list and printed.
These are a few examples of how to use the anchor_generator module and its random anchor generation strategies in Python. The generated anchor boxes can be used for training object detection models like Faster R-CNN or SSD (Single Shot MultiBox Detector).
