欢迎访问宙启技术站
智能推送

利用matplotlib.path.Path库实现路径交互操作

发布时间:2023-12-22 20:20:00

matplotlib.path.Path是一个用于处理和操作路径的库。它可以用来创建和编辑路径,以及进行路径的交互操作。下面是一个使用matplotlib.path.Path库实现路径交互操作的例子。

首先,需要导入matplotlib和numpy库,并创建一个用于显示图形的figure和axes对象。然后,使用matplotlib.path.Path对象创建一个初始路径。

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.path as mpath

# Create figure and axes
fig, ax = plt.subplots()

# Create initial path
path_data = [
    (mpath.Path.MOVETO, (1, 1)),
    (mpath.Path.LINETO, (1, 2)),
    (mpath.Path.LINETO, (2, 2)),
    (mpath.Path.LINETO, (2, 1)),
    (mpath.Path.CLOSEPOLY, (1, 1))
]
path = mpath.Path([vertex for code, vertex in path_data], [code for code, vertex in path_data])

# Draw initial path
patch = mpatches.PathPatch(path, facecolor='none', edgecolor='blue')
ax.add_patch(patch)
ax.set_xlim(0, 3)
ax.set_ylim(0, 3)

然后,可以使用鼠标操作进行路径的交互操作。下面是一个实现平移路径的函数。

def translate_path(event):
    if event.button == 1 and event.inaxes:
        x, y = event.xdata, event.ydata
        vertices = path.vertices + np.array([x, y])
        path.vertices = vertices
        patch.set_path(path)
        fig.canvas.draw()

我们可以将此函数与鼠标按钮按下的事件和鼠标移动事件绑定,实现平移路径的操作。

fig.canvas.mpl_connect('button_press_event', translate_path)
fig.canvas.mpl_connect('motion_notify_event', translate_path)

同样的方式,可以实现对路径进行缩放和旋转的操作。下面是一个实现缩放路径的函数。

def scale_path(event):
    if event.button == 3 and event.inaxes:
        x, y = event.xdata, event.ydata
        vertices = (path.vertices - np.array([x, y])) * 1.1 + np.array([x, y])
        path.vertices = vertices
        patch.set_path(path)
        fig.canvas.draw()

同样的方式,我们将此函数与鼠标右键按下的事件绑定,实现缩放路径的操作。

fig.canvas.mpl_connect('button_press_event', scale_path)

类似地,我们可以实现对路径进行旋转的操作。下面是一个实现旋转路径的函数。

def rotate_path(event):
    if event.button == 2 and event.inaxes:
        x, y = event.xdata, event.ydata
        angle = np.deg2rad(10)
        rotation_matrix = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]])
        vertices = (path.vertices - np.array([x, y])) @ rotation_matrix + np.array([x, y])
        path.vertices = vertices
        patch.set_path(path)
        fig.canvas.draw()

同样的方式,我们将此函数与鼠标中键按下的事件绑定,实现旋转路径的操作。

fig.canvas.mpl_connect('button_press_event', rotate_path)

最后,我们将所有的代码放在一个完整的程序中,并运行。

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.path as mpath
import matplotlib.patches as mpatches

def translate_path(event):
    if event.button == 1 and event.inaxes:
        x, y = event.xdata, event.ydata
        vertices = path.vertices + np.array([x, y])
        path.vertices = vertices
        patch.set_path(path)
        fig.canvas.draw()

def scale_path(event):
    if event.button == 3 and event.inaxes:
        x, y = event.xdata, event.ydata
        vertices = (path.vertices - np.array([x, y])) * 1.1 + np.array([x, y])
        path.vertices = vertices
        patch.set_path(path)
        fig.canvas.draw()

def rotate_path(event):
    if event.button == 2 and event.inaxes:
        x, y = event.xdata, event.ydata
        angle = np.deg2rad(10)
        rotation_matrix = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]])
        vertices = (path.vertices - np.array([x, y])) @ rotation_matrix + np.array([x, y])
        path.vertices = vertices
        patch.set_path(path)
        fig.canvas.draw()

# Create figure and axes
fig, ax = plt.subplots()

# Create initial path
path_data = [
    (mpath.Path.MOVETO, (1, 1)),
    (mpath.Path.LINETO, (1, 2)),
    (mpath.Path.LINETO, (2, 2)),
    (mpath.Path.LINETO, (2, 1)),
    (mpath.Path.CLOSEPOLY, (1, 1))
]
path = mpath.Path([vertex for code, vertex in path_data], [code for code, vertex in path_data])

# Draw initial path
patch = mpatches.PathPatch(path, facecolor='none', edgecolor='blue')
ax.add_patch(patch)
ax.set_xlim(0, 3)
ax.set_ylim(0, 3)

# Connect event handlers
fig.canvas.mpl_connect('button_press_event', translate_path)
fig.canvas.mpl_connect('motion_notify_event', translate_path)
fig.canvas.mpl_connect('button_press_event', scale_path)
fig.canvas.mpl_connect('button_press_event', rotate_path)

# Show plot
plt.show()

以上就是一个使用matplotlib.path.Path库实现路径交互操作的例子。通过定义不同的交互函数,并与不同的鼠标事件绑定,我们可以实现路径的平移、缩放和旋转等操作。