MXNet.io中文版:TensorFlow和PyTorch之外的选择
发布时间:2023-12-19 05:58:03
在MXNet.io,除了TensorFlow和PyTorch之外,还有其他一些选择可以作为深度学习框架使用。下面将介绍两个常用的框架:Gluon和Keras,并附带使用例子。
1. Gluon
Gluon是MXNet的高级API,提供了简单而直观的接口,可以快速构建深度学习模型。以下是一个使用Gluon构建卷积神经网络(CNN)的例子:
import mxnet as mx
from mxnet import nd, autograd, gluon
# 定义模型
net = gluon.nn.Sequential()
with net.name_scope():
net.add(gluon.nn.Conv2D(channels=20, kernel_size=5, activation='relu'))
net.add(gluon.nn.MaxPool2D(pool_size=2, strides=2))
net.add(gluon.nn.Conv2D(channels=50, kernel_size=3, activation='relu'))
net.add(gluon.nn.MaxPool2D(pool_size=2, strides=2))
net.add(gluon.nn.Flatten())
net.add(gluon.nn.Dense(128, activation="relu"))
net.add(gluon.nn.Dense(10))
# 定义损失函数
softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()
# 定义优化器
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.1})
# 加载数据
mnist = mx.test_utils.get_mnist()
# 训练模型
for epoch in range(10):
train_data = mx.io.NDArrayIter(mnist['train_data'], mnist['train_label'], batch_size=64, shuffle=True)
test_data = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], batch_size=64)
for batch in train_data:
with autograd.record():
data = batch.data[0]
label = batch.label[0]
output = net(data)
loss = softmax_cross_entropy(output, label)
loss.backward()
trainer.step(batch.data[0].shape[0])
test_acc = mx.metric.Accuracy()
for batch in test_data:
data = batch.data[0]
label = batch.label[0]
output = net(data)
predictions = nd.argmax(output, axis=1)
test_acc.update(preds=predictions, labels=label)
print("Epoch %s, Test acc %s" % (epoch, test_acc.get()[1]))
2. Keras
Keras是一个用户友好的深度学习库,可以与MXNet集成,提供了高级别的抽象和简洁的API。以下是一个使用Keras构建全连接神经网络的例子:
import mxnet as mx
from mxnet import nd, autograd, gluon
from mxnet.keras import utils, layers, Model
# 定义模型
class MyModel(Model):
def __init__(self):
super(MyModel, self).__init__()
self.dense1 = layers.Dense(64, activation='relu')
self.dense2 = layers.Dense(10)
def forward(self, x):
x = self.dense1(x)
return self.dense2(x)
model = MyModel()
# 定义损失函数
loss_fn = gluon.loss.SoftmaxCrossEntropyLoss()
# 定义优化器
trainer = gluon.Trainer(model.collect_params(), 'sgd', {'learning_rate': 0.1})
# 加载数据
(x_train, y_train), (x_test, y_test) = utils.get_np_data(mnist=True, num_train=60000, num_test=10000, flatten=True, shuffle=True)
# 数据预处理
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
y_train = utils.to_categorical(y_train.astype('float32'))
y_test = utils.to_categorical(y_test.astype('float32'))
# 训练模型
for epoch in range(10):
with autograd.record():
y_pred = model(nd.array(x_train))
loss = loss_fn(y_pred, nd.array(y_train))
loss.backward()
trainer.step(x_train.shape[0])
y_pred_test = model(nd.array(x_test))
test_acc = mx.metric.Accuracy()
test_acc.update(preds=nd.argmax(y_pred_test, axis=1), labels=nd.array(y_test))
print("Epoch %s, Test acc %s" % (epoch, test_acc.get()[1]))
以上是在MXNet.io中使用两个常用的框架Gluon和Keras的例子,它们都提供了简单而直观的接口,方便用户构建和训练深度学习模型。
