欢迎访问宙启技术站
智能推送

MXNet.io中文版:TensorFlow和PyTorch之外的选择

发布时间:2023-12-19 05:58:03

在MXNet.io,除了TensorFlow和PyTorch之外,还有其他一些选择可以作为深度学习框架使用。下面将介绍两个常用的框架:Gluon和Keras,并附带使用例子。

1. Gluon

Gluon是MXNet的高级API,提供了简单而直观的接口,可以快速构建深度学习模型。以下是一个使用Gluon构建卷积神经网络(CNN)的例子:

import mxnet as mx
from mxnet import nd, autograd, gluon

# 定义模型
net = gluon.nn.Sequential()
with net.name_scope():
    net.add(gluon.nn.Conv2D(channels=20, kernel_size=5, activation='relu'))
    net.add(gluon.nn.MaxPool2D(pool_size=2, strides=2))
    net.add(gluon.nn.Conv2D(channels=50, kernel_size=3, activation='relu'))
    net.add(gluon.nn.MaxPool2D(pool_size=2, strides=2))
    net.add(gluon.nn.Flatten())
    net.add(gluon.nn.Dense(128, activation="relu"))
    net.add(gluon.nn.Dense(10))

# 定义损失函数
softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()

# 定义优化器
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.1})

# 加载数据
mnist = mx.test_utils.get_mnist()

# 训练模型
for epoch in range(10):
    train_data = mx.io.NDArrayIter(mnist['train_data'], mnist['train_label'], batch_size=64, shuffle=True)
    test_data = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], batch_size=64)
    
    for batch in train_data:
        with autograd.record():
            data = batch.data[0]
            label = batch.label[0]
            output = net(data)
            loss = softmax_cross_entropy(output, label)
        loss.backward()
        trainer.step(batch.data[0].shape[0])
    
    test_acc = mx.metric.Accuracy()
    for batch in test_data:
        data = batch.data[0]
        label = batch.label[0]
        output = net(data)
        predictions = nd.argmax(output, axis=1)
        test_acc.update(preds=predictions, labels=label)
    
    print("Epoch %s, Test acc %s" % (epoch, test_acc.get()[1]))

2. Keras

Keras是一个用户友好的深度学习库,可以与MXNet集成,提供了高级别的抽象和简洁的API。以下是一个使用Keras构建全连接神经网络的例子:

import mxnet as mx
from mxnet import nd, autograd, gluon
from mxnet.keras import utils, layers, Model

# 定义模型
class MyModel(Model):
    def __init__(self):
        super(MyModel, self).__init__()
        self.dense1 = layers.Dense(64, activation='relu')
        self.dense2 = layers.Dense(10)

    def forward(self, x):
        x = self.dense1(x)
        return self.dense2(x)

model = MyModel()

# 定义损失函数
loss_fn = gluon.loss.SoftmaxCrossEntropyLoss()

# 定义优化器
trainer = gluon.Trainer(model.collect_params(), 'sgd', {'learning_rate': 0.1})

# 加载数据
(x_train, y_train), (x_test, y_test) = utils.get_np_data(mnist=True, num_train=60000, num_test=10000, flatten=True, shuffle=True)

# 数据预处理
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

y_train = utils.to_categorical(y_train.astype('float32'))
y_test = utils.to_categorical(y_test.astype('float32'))

# 训练模型
for epoch in range(10):
    with autograd.record():
        y_pred = model(nd.array(x_train))
        loss = loss_fn(y_pred, nd.array(y_train))

    loss.backward()
    trainer.step(x_train.shape[0])

    y_pred_test = model(nd.array(x_test))
    test_acc = mx.metric.Accuracy()
    test_acc.update(preds=nd.argmax(y_pred_test, axis=1), labels=nd.array(y_test))
    print("Epoch %s, Test acc %s" % (epoch, test_acc.get()[1]))

以上是在MXNet.io中使用两个常用的框架Gluon和Keras的例子,它们都提供了简单而直观的接口,方便用户构建和训练深度学习模型。