使用KerasApplications中的ImageNet工具进行图像风格迁移
发布时间:2023-12-18 15:21:32
KerasApplications是一个Keras的扩展库,提供了一些常用的深度学习模型,并针对这些模型进行了预训练。其中,ImageNet是一个庞大的图像数据集,包含了1000个不同的类别。ImageNet工具可以帮助我们使用KerasApplications中的预训练模型进行图像风格迁移。
以下是一个使用ImageNet工具进行图像风格迁移的示例代码:
import keras
from keras.applications import vgg19
from keras.preprocessing.image import load_img, img_to_array
# 加载预训练的VGG19模型
model = vgg19.VGG19(weights='imagenet', include_top=False)
# 定义内容图像和风格图像的路径
content_image_path = 'content.jpg'
style_image_path = 'style.jpg'
# 加载和预处理图像
def preprocess_image(image_path):
img = load_img(image_path, target_size=(224, 224))
img = img_to_array(img)
img = keras.applications.vgg19.preprocess_input(img)
img = np.expand_dims(img, axis=0)
return img
# 将图像转换为原始像素值
def deprocess_image(x):
x[:, :, 0] += 103.939
x[:, :, 1] += 116.779
x[:, :, 2] += 123.68
x = x[:, :, ::-1]
x = np.clip(x, 0, 255).astype('uint8')
return x
# 定义内容图像和风格图像
content_image = preprocess_image(content_image_path)
style_image = preprocess_image(style_image_path)
# 使用VGG19模型提取内容图像和风格图像的特征
content_features = model.predict(content_image)
style_features = model.predict(style_image)
# 定义用于计算内容损失的函数
def content_loss(content, target):
return K.sum(K.square(target - content))
# 定义用于计算风格损失的函数
def style_loss(style, target):
return K.sum(K.square(target - style))
# 定义总损失函数
def total_variation_loss(x):
a = K.square(x[:, :-1, :-1, :] - x[:, 1:, :-1, :])
b = K.square(x[:, :-1, :-1, :] - x[:, :-1, 1:, :])
return K.sum(K.pow(a + b, 1.25))
# 定义总的损失值
content_weight = 0.025
style_weight = 1.0
total_variation_weight = 1.0
loss = content_weight * content_loss(content_features, target_features) + \
style_weight * style_loss(style_features, target_features) + \
total_variation_weight * total_variation_loss(target_image)
# 计算梯度并进行更新
grads = K.gradients(loss, target_image)
fetch_loss_and_grads = K.function([target_image], [loss, grads])
class Evaluator(object):
def __init__(self):
self.loss_value = None
self.grads_values = None
def loss(self, x):
assert self.loss_value is None
x = x.reshape((1, img_height, img_width, 3))
outs = fetch_loss_and_grads([x])
loss_value = outs[0]
gradient_values = outs[1].flatten().astype('float64')
self.loss_value = loss_value
self.grads_values = gradient_values
return self.loss_value
def grads(self, x):
assert self.loss_value is not None
gradient_values = np.copy(self.grads_values)
self.loss_value = None
self.grads_values = None
return gradient_values
evaluator = Evaluator()
# 进行迭代优化
from scipy.optimize import fmin_l_bfgs_b
from imageio import imsave
result_prefix = 'styled_image'
iterations = 20
x = preprocess_image(content_image_path)
x = x.flatten()
for i in range(iterations):
print('Start of iteration', i)
x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x, fprime=evaluator.grads, maxfun=20)
print('Current loss value:', min_val)
img = x.copy().reshape((img_height, img_width, 3))
img = deprocess_image(img)
filename = result_prefix + '_at_iteration_%d.png' % i
imsave(filename, img)
print('Image saved as', filename)
以上代码使用VGG19模型提取了内容图像和风格图像的特征,然后定义了内容损失函数、风格损失函数和总损失函数。接着使用L-BFGS-B算法进行迭代优化,最终得到了一张与内容图像具有相似内容、与风格图像具有相似风格的图像。
