使用tf_example_decoder进行ObjectDetection数据解码的Python 实践探索
发布时间:2023-12-18 14:18:27
tf_example_decoder是TensorFlow中的一个工具,用于解码tf.Example数据格式,用于输入到Object Detection模型中。它可以将图像和标签数据从tf.Example格式转换为适合训练Object Detection模型的张量。以下是使用tf_example_decoder进行Object Detection数据解码的Python 实践探索,以及使用示例。
1. 导入所需的库
import tensorflow as tf from object_detection.data_decoders import tf_example_decoder
2. 创建解码器
decoder = tf_example_decoder.TfExampleDecoder()
3. 定义解码器需要解码的字段
keys_to_features = {
'image/encoded': tf.FixedLenFeature((), tf.string),
'image/format': tf.FixedLenFeature((), tf.string),
'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32),
'image/object/class/label': tf.VarLenFeature(dtype=tf.int64),
'image/height': tf.FixedLenFeature((), tf.int64),
'image/width': tf.FixedLenFeature((), tf.int64),
}
4. 解码tf.Example数据
def decode(serialized_example):
example = tf.parse_single_example(serialized_example, keys_to_features)
decoded_tensors = decoder.decode(example)
return decoded_tensors
5. 使用解码器将tf.Example数据转换为张量
def preprocess_image(image):
image = tf.image.decode_jpeg(image, channels=3)
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
image = tf.image.resize_images(image, [256, 256])
return image
def preprocess_label(label):
label = tf.sparse_to_dense(label.indices, label.dense_shape, label.values, default_value=0)
return label
def process_example(decoded_example):
image = decoded_example['image/encoded']
label = decoded_example['image/object/class/label']
processed_image = preprocess_image(image)
processed_label = preprocess_label(label)
return processed_image, processed_label
6. 读取tfrecord数据并使用解码器解码
def read_tfrecord_dataset(file_pattern):
dataset = tf.data.TFRecordDataset(file_pattern)
dataset = dataset.map(decode)
dataset = dataset.map(process_example)
return dataset
7. 使用解码后的数据训练Object Detection模型
def train_model(dataset):
model = create_object_detection_model()
optimizer = tf.train.AdamOptimizer()
for image, label in dataset:
with tf.GradientTape() as tape:
logits = model(image)
loss = calculate_loss(logits, label)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
使用tf_example_decoder进行Object Detection数据解码的Python 实践探索的示例代码如下:
import tensorflow as tf
from object_detection.data_decoders import tf_example_decoder
# 创建解码器
decoder = tf_example_decoder.TfExampleDecoder()
# 定义解码器需要解码的字段
keys_to_features = {
'image/encoded': tf.FixedLenFeature((), tf.string),
'image/format': tf.FixedLenFeature((), tf.string),
'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32),
'image/object/class/label': tf.VarLenFeature(dtype=tf.int64),
'image/height': tf.FixedLenFeature((), tf.int64),
'image/width': tf.FixedLenFeature((), tf.int64),
}
# 解码tf.Example数据
def decode(serialized_example):
example = tf.parse_single_example(serialized_example, keys_to_features)
decoded_tensors = decoder.decode(example)
return decoded_tensors
# 使用解码器将tf.Example数据转换为张量
def preprocess_image(image):
image = tf.image.decode_jpeg(image, channels=3)
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
image = tf.image.resize_images(image, [256, 256])
return image
def preprocess_label(label):
label = tf.sparse_to_dense(label.indices, label.dense_shape, label.values, default_value=0)
return label
def process_example(decoded_example):
image = decoded_example['image/encoded']
label = decoded_example['image/object/class/label']
processed_image = preprocess_image(image)
processed_label = preprocess_label(label)
return processed_image, processed_label
# 读取tfrecord数据并使用解码器解码
def read_tfrecord_dataset(file_pattern):
dataset = tf.data.TFRecordDataset(file_pattern)
dataset = dataset.map(decode)
dataset = dataset.map(process_example)
return dataset
# 使用解码后的数据训练Object Detection模型
def train_model(dataset):
model = create_object_detection_model()
optimizer = tf.train.AdamOptimizer()
for image, label in dataset:
with tf.GradientTape() as tape:
logits = model(image)
loss = calculate_loss(logits, label)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
通过上述步骤,您可以使用tf_example_decoder对Object Detection数据进行解码,并将其转化为适合训练模型的输入张量。
