欢迎访问宙启技术站
智能推送

使用tf_example_decoder进行ObjectDetection数据解码的Python 实践探索

发布时间:2023-12-18 14:18:27

tf_example_decoder是TensorFlow中的一个工具,用于解码tf.Example数据格式,用于输入到Object Detection模型中。它可以将图像和标签数据从tf.Example格式转换为适合训练Object Detection模型的张量。以下是使用tf_example_decoder进行Object Detection数据解码的Python 实践探索,以及使用示例。

1. 导入所需的库

import tensorflow as tf
from object_detection.data_decoders import tf_example_decoder

2. 创建解码器

decoder = tf_example_decoder.TfExampleDecoder()

3. 定义解码器需要解码的字段

keys_to_features = {
    'image/encoded': tf.FixedLenFeature((), tf.string),
    'image/format': tf.FixedLenFeature((), tf.string),
    'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32),
    'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32),
    'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32),
    'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32),
    'image/object/class/label': tf.VarLenFeature(dtype=tf.int64),
    'image/height': tf.FixedLenFeature((), tf.int64),
    'image/width': tf.FixedLenFeature((), tf.int64),
}

4. 解码tf.Example数据

def decode(serialized_example):
    example = tf.parse_single_example(serialized_example, keys_to_features)
    decoded_tensors = decoder.decode(example)
    return decoded_tensors

5. 使用解码器将tf.Example数据转换为张量

def preprocess_image(image):
    image = tf.image.decode_jpeg(image, channels=3)
    image = tf.image.convert_image_dtype(image, dtype=tf.float32)
    image = tf.image.resize_images(image, [256, 256])
    return image

def preprocess_label(label):
    label = tf.sparse_to_dense(label.indices, label.dense_shape, label.values, default_value=0)
    return label

def process_example(decoded_example):
    image = decoded_example['image/encoded']
    label = decoded_example['image/object/class/label']
    
    processed_image = preprocess_image(image)
    processed_label = preprocess_label(label)
    
    return processed_image, processed_label

6. 读取tfrecord数据并使用解码器解码

def read_tfrecord_dataset(file_pattern):
    dataset = tf.data.TFRecordDataset(file_pattern)
    dataset = dataset.map(decode)
    dataset = dataset.map(process_example)
    return dataset

7. 使用解码后的数据训练Object Detection模型

def train_model(dataset):
    model = create_object_detection_model()
    optimizer = tf.train.AdamOptimizer()
    
    for image, label in dataset:
        with tf.GradientTape() as tape:
            logits = model(image)
            loss = calculate_loss(logits, label)
        
        gradients = tape.gradient(loss, model.trainable_variables)
        optimizer.apply_gradients(zip(gradients, model.trainable_variables))

使用tf_example_decoder进行Object Detection数据解码的Python 实践探索的示例代码如下:

import tensorflow as tf
from object_detection.data_decoders import tf_example_decoder

# 创建解码器
decoder = tf_example_decoder.TfExampleDecoder()

# 定义解码器需要解码的字段
keys_to_features = {
    'image/encoded': tf.FixedLenFeature((), tf.string),
    'image/format': tf.FixedLenFeature((), tf.string),
    'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32),
    'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32),
    'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32),
    'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32),
    'image/object/class/label': tf.VarLenFeature(dtype=tf.int64),
    'image/height': tf.FixedLenFeature((), tf.int64),
    'image/width': tf.FixedLenFeature((), tf.int64),
}

# 解码tf.Example数据
def decode(serialized_example):
    example = tf.parse_single_example(serialized_example, keys_to_features)
    decoded_tensors = decoder.decode(example)
    return decoded_tensors

# 使用解码器将tf.Example数据转换为张量
def preprocess_image(image):
    image = tf.image.decode_jpeg(image, channels=3)
    image = tf.image.convert_image_dtype(image, dtype=tf.float32)
    image = tf.image.resize_images(image, [256, 256])
    return image

def preprocess_label(label):
    label = tf.sparse_to_dense(label.indices, label.dense_shape, label.values, default_value=0)
    return label

def process_example(decoded_example):
    image = decoded_example['image/encoded']
    label = decoded_example['image/object/class/label']
    
    processed_image = preprocess_image(image)
    processed_label = preprocess_label(label)
    
    return processed_image, processed_label

# 读取tfrecord数据并使用解码器解码
def read_tfrecord_dataset(file_pattern):
    dataset = tf.data.TFRecordDataset(file_pattern)
    dataset = dataset.map(decode)
    dataset = dataset.map(process_example)
    return dataset

# 使用解码后的数据训练Object Detection模型
def train_model(dataset):
    model = create_object_detection_model()
    optimizer = tf.train.AdamOptimizer()
    
    for image, label in dataset:
        with tf.GradientTape() as tape:
            logits = model(image)
            loss = calculate_loss(logits, label)
        
        gradients = tape.gradient(loss, model.trainable_variables)
        optimizer.apply_gradients(zip(gradients, model.trainable_variables))

通过上述步骤,您可以使用tf_example_decoder对Object Detection数据进行解码,并将其转化为适合训练模型的输入张量。