使用Keras应用程序包中的VGG19模型进行图像风格转换的实现
发布时间:2023-12-18 03:47:57
Keras是一个高级的神经网络API,可以使用几行代码快速搭建和训练深度学习模型。其中包含了一些已经预训练的模型,如VGG19,可以用于不同的图像处理任务,比如图像分类、目标检测和图像风格转换。
图像风格转换是将一张图片的内容与另一张图片的风格相结合,生成一张新的图片,既保持了原始图片的内容,又具有另一张图片的风格。VGG19模型可以用来提取图片的内容特征和风格特征,然后通过一些优化算法将这些特征结合起来生成新的图片。
以下是使用Keras中的VGG19模型进行图像风格转换的实现步骤:
1. 导入所需的库和模块:
from keras.applications import VGG19 from keras.preprocessing.image import load_img, img_to_array from keras import backend as K import numpy as np import scipy.optimize as optimize
2. 加载VGG19模型,并选择需要的层:
model = VGG19(weights='imagenet', include_top=False) content_layers = ['block5_conv2'] style_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1']
3. 定义内容损失函数:
def content_loss(content, target):
return K.sum(K.square(target - content))
4. 定义风格损失函数:
def gram_matrix(features):
shape = K.shape(features)
features = K.reshape(features, (shape[0], shape[1] * shape[2], shape[3]))
gram = K.batch_dot(features, K.permute_dimensions(features, (0, 2, 1)))
return gram / (shape[1] * shape[2])
def style_loss(style, target):
style_gram = gram_matrix(style)
target_gram = gram_matrix(target)
return K.sum(K.square(target_gram - style_gram))
5. 定义总体损失函数:
def total_variation_loss(x):
a = K.square(x[:, :-1, :-1, :] - x[:, 1:, :-1, :])
b = K.square(x[:, :-1, :-1, :] - x[:, :-1, 1:, :])
return K.sum(K.pow(a + b, 1.25))
def loss_function(inputs):
content_features = model(inputs[0])
style_features = model(inputs[1])
output_features = model(inputs[2])
loss = 0.0
for content_layer in content_layers:
content_feature = content_features[content_layer]
output_feature = output_features[content_layer]
loss += content_loss(content_feature, output_feature)
for style_layer in style_layers:
style_feature = style_features[style_layer]
output_feature = output_features[style_layer]
loss += style_loss(style_feature, output_feature)
loss += 0.001 * total_variation_loss(inputs[2])
return loss
6. 定义优化器和迭代函数:
def preprocess_image(image_path):
img = load_img(image_path)
img = img_to_array(img)
img = np.expand_dims(img, axis=0)
img = preprocess_input(img)
return img
def deprocess_image(x):
x = x.reshape((img_height, img_width, 3))
x /= 2.0
x += 0.5
x *= 255.0
x = np.clip(x, 0, 255).astype('uint8')
return x
def callback(epoch, logs):
if epoch % 10 == 0:
img = deprocess_image(logs['x'])
img_save_path = 'output_epoch_{}.jpg'.format(epoch)
scipy.misc.imsave(img_save_path, img)
def run_style_transfer(content_path, style_path, num_iterations=100, content_weight=1e3, style_weight=1e-2):
content_image = preprocess_image(content_path)
style_image = preprocess_image(style_path)
generated_image = K.variable(content_image) # initialized with content image
inputs = K.concatenate([content_image, style_image, generated_image], axis=0)
# set up the optimizer
optimizer = optimize.lbfgsb.fmin_l_bfgs_b(loss_function, K.flatten(generated_image).astype('float64'),
fprime=K.function([generated_image], K.grads(loss_function)(inputs)),
maxfun=20)
# run the optimizer
for i in range(num_iterations):
print('Iteration:', i)
generated_image = optimizer[0].reshape(content_image.shape)
x = [generated_image]
# evaluate gradient and loss
grads = K.function([generated_image], K.grads(loss_function)(inputs))(x)
loss_value = loss_function(x)
# update generated image
x[0] -= grads[0].flatten() * content_weight / (content_weight + style_weight)
optimizer = optimize.lbfgsb.fmin_l_bfgs_b(loss_function, x.flatten().astype('float64'),
fprime=K.function([generated_image], K.grads(loss_function)(inputs)),
maxfun=20)
plt.figure(figsize=(10, 10))
plt.imshow(deprocess_image(generated_image))
plt.show()
7. 运行风格转换:
content_path = 'content.jpg' style_path = 'style.jpg' run_style_transfer(content_path, style_path, num_iterations=100)
在上述代码中,我们使用了content.jpg和style.jpg作为输入的内容图片和风格图片,进行了100次迭代的优化过程,并将结果显示出来。
以上就是使用Keras应用程序包中的VGG19模型进行图像风格转换的示例实现。你可以根据自己的需要选择不同的内容层和风格层,调整权重和迭代次数,以达到更好的风格转换效果。
