欢迎访问宙启技术站
智能推送

使用Keras应用程序包中的VGG19模型进行图像风格转换的实现

发布时间:2023-12-18 03:47:57

Keras是一个高级的神经网络API,可以使用几行代码快速搭建和训练深度学习模型。其中包含了一些已经预训练的模型,如VGG19,可以用于不同的图像处理任务,比如图像分类、目标检测和图像风格转换。

图像风格转换是将一张图片的内容与另一张图片的风格相结合,生成一张新的图片,既保持了原始图片的内容,又具有另一张图片的风格。VGG19模型可以用来提取图片的内容特征和风格特征,然后通过一些优化算法将这些特征结合起来生成新的图片。

以下是使用Keras中的VGG19模型进行图像风格转换的实现步骤:

1. 导入所需的库和模块:

from keras.applications import VGG19
from keras.preprocessing.image import load_img, img_to_array
from keras import backend as K
import numpy as np
import scipy.optimize as optimize

2. 加载VGG19模型,并选择需要的层:

model = VGG19(weights='imagenet', include_top=False)
content_layers = ['block5_conv2']
style_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1']

3. 定义内容损失函数:

def content_loss(content, target):
    return K.sum(K.square(target - content))

4. 定义风格损失函数:

def gram_matrix(features):
    shape = K.shape(features)
    features = K.reshape(features, (shape[0], shape[1] * shape[2], shape[3]))
    gram = K.batch_dot(features, K.permute_dimensions(features, (0, 2, 1)))
    return gram / (shape[1] * shape[2])

def style_loss(style, target):
    style_gram = gram_matrix(style)
    target_gram = gram_matrix(target)
    return K.sum(K.square(target_gram - style_gram))

5. 定义总体损失函数:

def total_variation_loss(x):
    a = K.square(x[:, :-1, :-1, :] - x[:, 1:, :-1, :])
    b = K.square(x[:, :-1, :-1, :] - x[:, :-1, 1:, :])
    return K.sum(K.pow(a + b, 1.25))

def loss_function(inputs):
    content_features = model(inputs[0])
    style_features = model(inputs[1])
    output_features = model(inputs[2])

    loss = 0.0
    for content_layer in content_layers:
        content_feature = content_features[content_layer]
        output_feature = output_features[content_layer]
        loss += content_loss(content_feature, output_feature)

    for style_layer in style_layers:
        style_feature = style_features[style_layer]
        output_feature = output_features[style_layer]
        loss += style_loss(style_feature, output_feature)

    loss += 0.001 * total_variation_loss(inputs[2])
    return loss

6. 定义优化器和迭代函数:

def preprocess_image(image_path):
    img = load_img(image_path)
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = preprocess_input(img)
    return img

def deprocess_image(x):
    x = x.reshape((img_height, img_width, 3))
    x /= 2.0
    x += 0.5
    x *= 255.0
    x = np.clip(x, 0, 255).astype('uint8')
    return x

def callback(epoch, logs):
    if epoch % 10 == 0:
        img = deprocess_image(logs['x'])
        img_save_path = 'output_epoch_{}.jpg'.format(epoch)
        scipy.misc.imsave(img_save_path, img)

def run_style_transfer(content_path, style_path, num_iterations=100, content_weight=1e3, style_weight=1e-2):
    content_image = preprocess_image(content_path)
    style_image = preprocess_image(style_path)

    generated_image = K.variable(content_image)  # initialized with content image
    inputs = K.concatenate([content_image, style_image, generated_image], axis=0)

    # set up the optimizer
    optimizer = optimize.lbfgsb.fmin_l_bfgs_b(loss_function, K.flatten(generated_image).astype('float64'),
                                              fprime=K.function([generated_image], K.grads(loss_function)(inputs)),
                                              maxfun=20)

    # run the optimizer
    for i in range(num_iterations):
        print('Iteration:', i)
        generated_image = optimizer[0].reshape(content_image.shape)
        x = [generated_image]

        # evaluate gradient and loss
        grads = K.function([generated_image], K.grads(loss_function)(inputs))(x)
        loss_value = loss_function(x)

        # update generated image
        x[0] -= grads[0].flatten() * content_weight / (content_weight + style_weight)
        optimizer = optimize.lbfgsb.fmin_l_bfgs_b(loss_function, x.flatten().astype('float64'),
                                                  fprime=K.function([generated_image], K.grads(loss_function)(inputs)),
                                                  maxfun=20)

        plt.figure(figsize=(10, 10))
        plt.imshow(deprocess_image(generated_image))
        plt.show()

7. 运行风格转换:

content_path = 'content.jpg'
style_path = 'style.jpg'
run_style_transfer(content_path, style_path, num_iterations=100)

在上述代码中,我们使用了content.jpg和style.jpg作为输入的内容图片和风格图片,进行了100次迭代的优化过程,并将结果显示出来。

以上就是使用Keras应用程序包中的VGG19模型进行图像风格转换的示例实现。你可以根据自己的需要选择不同的内容层和风格层,调整权重和迭代次数,以达到更好的风格转换效果。