使用Keras中的VGG16模型进行图像风格迁移
发布时间:2023-12-17 17:52:03
图像风格迁移是一种将一个图像的风格应用到另一个图像中的技术。它通过优化一个损失函数来实现,在保持目标图像的内容的同时,将源图像的风格应用到目标图像上。VGG16是一种常用的卷积神经网络模型,可以用来提取图像的特征。在Keras中,我们可以使用预训练的VGG16模型来进行图像风格迁移。
首先我们需要导入必要的库和模块:
import numpy as np from keras import backend as K from keras.applications import vgg16 from keras.models import Model from keras.preprocessing.image import load_img, img_to_array from keras.applications.vgg16 import preprocess_input from scipy.optimize import fmin_l_bfgs_b import matplotlib.pyplot as plt
接下来,我们定义一些辅助函数。
def preprocess_image(image_path):
img = load_img(image_path, target_size=(img_height, img_width))
img = img_to_array(img)
img = np.expand_dims(img, axis=0)
img = preprocess_input(img)
return img
def deprocess_image(x):
if K.image_data_format() == 'channels_first':
x = x.reshape((3, img_height, img_width))
x = x.transpose((1, 2, 0))
else:
x = x.reshape((img_height, img_width, 3))
x[:, :, 0] += 103.939
x[:, :, 1] += 116.779
x[:, :, 2] += 123.68
x = x[:, :, ::-1]
x = np.clip(x, 0, 255).astype('uint8')
return x
接下来,我们加载预训练的VGG16模型,并选择一些层作为风格特征和内容特征的提取器。
base_model = vgg16.VGG16(weights='imagenet', include_top=False, input_shape=(img_height, img_width, 3)) # 在这里选择一些中间层作为风格特征提取器。 style_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1'] # 选择一个中间层作为内容特征提取器。 content_layer = 'block4_conv2' # 创建一个新的模型,只包含需要的层。 model = Model(inputs=base_model.input, outputs=[base_model.get_layer(layer).output for layer in style_layers + [content_layer]])
接下来,我们定义计算风格损失、内容损失和总损失的函数。
def style_loss(style, combination):
style = K.batch_flatten(K.permute_dimensions(style, (2, 0, 1)))
combination = K.batch_flatten(K.permute_dimensions(combination, (2, 0, 1)))
style = K.dot(style, K.transpose(style))
combination = K.dot(combination, K.transpose(combination))
loss = K.sum(K.square(style - combination)) / (4.0 * (channels ** 2) * (img_height * img_width) ** 2)
return loss
def content_loss(base, combination):
loss = K.sum(K.square(combination - base))
return loss
def total_variation_loss(x):
a = K.square(x[:, :img_height - 1, :img_width - 1, :] - x[:, 1:, :img_width - 1, :])
b = K.square(x[:, :img_height - 1, :img_width - 1, :] - x[:, :img_height - 1, 1:, :])
loss = K.sum(K.pow(a + b, 1.25))
return loss
def compute_loss(combination_image, base_image, style_reference_image):
input_tensor = K.concatenate([base_image, style_reference_image, combination_image], axis=0)
features = model(input_tensor)
loss = K.variable(0.0)
layer_features = features[0:len(style_layers)]
weight_per_layer = 1.0 / len(layer_features)
for target_features, combination_features in zip(layer_features, features[len(style_layers):]):
loss += weight_per_layer * style_loss(target_features[0], combination_features[0])
loss += content_weight * content_loss(features[len(style_layers)][0], combination_image)
loss += total_variation_weight * total_variation_loss(combination_image)
return loss
最后,我们定义一个函数来实现图像风格迁移:
def style_transfer(base_image_path, style_reference_image_path, iterations=10):
base_image = K.variable(preprocess_image(base_image_path))
style_reference_image = K.variable(preprocess_image(style_reference_image_path))
combination_image = K.placeholder((1, img_height, img_width, 3))
input_tensor = K.concatenate([base_image, style_reference_image, combination_image], axis=0)
loss = compute_loss(combination_image, base_image, style_reference_image)
grads = K.gradients(loss, combination_image)[0]
fetch_loss_and_grads = K.function([combination_image], [loss, grads])
def eval_loss_and_grads(x):
x = x.reshape((1, img_height, img_width, 3))
outs = fetch_loss_and_grads([x])
loss_value = outs[0]
grad_values = outs[1].flatten().astype('float64')
return loss_value, grad_values
class Evaluator:
def __init__(self):
self.loss_value = None
self.grad_values = None
def loss(self, x):
assert self.loss_value is None
loss_value, grad_values = eval_loss_and_grads(x)
self.loss_value = loss_value
self.grad_values = grad_values
return self.loss_value
def grads(self, x):
assert self.loss_value is not None
grad_values = np.copy(self.grad_values)
self.loss_value = None
self.grad_values = None
return grad_values
evaluator = Evaluator()
x = preprocess_image(base_image_path)
x = x.flatten()
for i in range(iterations):
print('Start of iteration', i+1)
x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x, fprime=evaluator.grads, maxfun=20)
print('Current loss value:', min_val)
img = deprocess_image(x.copy())
fname = 'styled_image_iter' + str(i+1) + '.png'
save_img(fname, img)
# 保存中间结果以观察
if i % 5 == 0:
plt.imshow(img)
plt.show()
return img
现在,我们可以调用函数来实现图像风格迁移。
style_transfer('path_to_base_image', 'path_to_style_reference_image', iterations=10)
在这个例子中,我们将通过10次迭代将基础图像的风格迁移到风格参考图像上。您可以根据需要自行调整迭代次数。
通过这个示例,您可以使用Keras中的VGG16模型进行图像风格迁移。这是一个强大的工具,可以帮助您创造出独特和富有创意的图像。
