欢迎访问宙启技术站
智能推送

Python深度学习:手把手教你搭建LeNet网络

发布时间:2023-12-17 08:12:15

LeNet是一个经典的卷积神经网络,由Yann LeCun等人在1998年提出,被广泛用于手写数字分类任务。它的网络结构相对简单,适合初学者入门深度学习。本文将手把手教你如何使用Python搭建LeNet网络,并带有一个简单的例子。

首先,我们需要导入相关的库和模块:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms

然后,定义LeNet网络的结构。LeNet包含两个卷积层、两个池化层和三个全连接层。

class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 4 * 4, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 4 * 4)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

接下来,我们需要加载数据。在本例中,我们使用MNIST数据集,该数据集包含手写数字图片。

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5,), (0.5,))])

trainset = torchvision.datasets.MNIST(root='./data', train=True,
                                      download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.MNIST(root='./data', train=False,
                                     download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64,
                                         shuffle=False, num_workers=2)

然后,我们可以开始训练网络了。首先,创建一个LeNet的实例,定义损失函数和优化器。

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

net = LeNet().to(device)

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

接下来,我们可以开始训练了。

for epoch in range(5):
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data[0].to(device), data[1].to(device)
        optimizer.zero_grad()
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 2000 == 1999:
            print(f'[{epoch + 1}, {i + 1}] loss: {running_loss / 2000:.3f}')
            running_loss = 0.0

print('Finished Training')

最后,我们可以测试我们的网络。

correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data[0].to(device), data[1].to(device)
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print(f'Accuracy: {100 * correct / total:.2f}%')

以上就是使用Python搭建LeNet网络的详细步骤和一个简单的例子。希望可以帮助到你入门深度学习。