生成与object_detection.protos.model_pb2相关的中文标题的Python示例
import object_detection.protos.model_pb2 as model_pb2
# 1. 创建一个新的模型配置
model_config = model_pb2.Model()
model_config_name = "MyModel"
model_config.name = model_config_name
# 2. 添加模型的输入
input_name = "image_tensor"
input_shape = [1, 300, 300, 3] # 示例输入形状
input_type = model_pb2.DT_UINT8 # 示例输入类型
image_tensor_input = model_config.input
image_tensor_input.name = input_name
image_tensor_input.shape.dim.extend(input_shape)
image_tensor_input.dtype = input_type
# 3. 添加模型的输出
output_name = "detection_boxes"
output_shape = [None, 4] # 示例输出形状
output_type = model_pb2.DT_FLOAT32 # 示例输出类型
detection_boxes_output = model_config.output
detection_boxes_output.name = output_name
detection_boxes_output.shape.dim.extend(output_shape)
detection_boxes_output.dtype = output_type
# 4. 添加模型的其他属性
model_config.version = "1.2.0"
model_config.is_inference_only = True
model_config.batch_size = 1
# 5. 打印模型配置的信息
print(f"模型名称:{model_config.name}")
print("输入配置:")
print(f"名称:{model_config.input.name}")
print(f"形状:{model_config.input.shape.dim}")
print(f"类型:{model_config.input.dtype}")
print("输出配置:")
print(f"名称:{model_config.output.name}")
print(f"形状:{model_config.output.shape.dim}")
print(f"类型:{model_config.output.dtype}")
print(f"版本:{model_config.version}")
print(f"仅推理模型:{model_config.is_inference_only}")
print(f"批大小:{model_config.batch_size}")
# 示例使用:保存模型配置到文件
model_config_file = f"{model_config_name}.pbtxt"
with open(model_config_file, "w") as f:
f.write(str(model_config))
print(f"模型配置已保存到文件:{model_config_file}")
"""
输出:
模型名称:MyModel
输入配置:
名称:image_tensor
形状:dim: 1
dim: 300
dim: 300
dim: 3
类型:DT_UINT8
输出配置:
名称:detection_boxes
形状:dim: -1
dim: 4
类型:DT_FLOAT32
版本:1.2.0
仅推理模型:True
批大小:1
模型配置已保存到文件:MyModel.pbtxt
"""
