欢迎访问宙启技术站
智能推送

在Python中使用datasets.pascal_voc库进行实例分割的示例代码是什么

发布时间:2023-12-16 04:21:29

使用datasets.pascal_voc库进行实例分割的示例代码如下:

import torch
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor
from torchvision.transforms import functional as F
from torchvision.datasets import VOCSegmentation

# 定义数据转换函数
def transform(image, target):
    image = F.to_tensor(image)
    target = F.to_tensor(target)
    return image, target

# 加载PASCAL VOC的实例分割数据集
dataset = VOCSegmentation('.', year='2012', image_set='train', download=True, transforms=transform)

# 划分训练集和验证集
indices = torch.randperm(len(dataset)).tolist()
train_size = int(len(dataset) * 0.8)
dataset = torch.utils.data.Subset(dataset, indices[:train_size])

# 定义模型
model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True)
num_classes = 21  # PASCAL VOC数据集中的类别数
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
hidden_layer = 256
model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask, hidden_layer, num_classes)

# 定义训练和验证数据加载器
data_loader = torch.utils.data.DataLoader(dataset, batch_size=2, shuffle=True, num_workers=4, collate_fn=lambda x: list(zip(*x)))

# 定义优化器和学习率调度器
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1)

# 训练模型
num_epochs = 10
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model.to(device)
model.train()
for epoch in range(num_epochs):
    for images, targets in data_loader:
        images = list(image.to(device) for image in images)
        targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
        
        loss_dict = model(images, targets)
        losses = sum(loss for loss in loss_dict.values())
        
        optimizer.zero_grad()
        losses.backward()
        optimizer.step()

    lr_scheduler.step()

    # 验证模型性能
    model.eval()
    val_loss = 0
    with torch.no_grad():
        for images, targets in val_data_loader:
            images = list(image.to(device) for image in images)
            targets = [{k: v.to(device) for k, v in t.items()} for t in targets]

            val_loss_dict = model(images, targets)
            val_losses = sum(loss for loss in val_loss_dict.values())
            val_loss += val_losses

    model.train()
    print(f'Epoch: {epoch+1}/{num_epochs}, Loss: {losses.item()}, Validation Loss: {val_loss.item()}')

# 保存模型
torch.save(model.state_dict(), 'model.pth')

以上是一个使用datasets.pascal_voc库进行实例分割的完整示例代码。需要注意的是,这只是一个简单的示例,实际使用时可能需要根据自己的数据和需求进行适当的修改和调整。