欢迎访问宙启技术站
智能推送

使用Python在AllenNLP中生成的中文实例标题

发布时间:2023-12-15 16:47:36

标题:使用AllenNLP构建中文文本分类模型的实例

使用例子一:

from allennlp.data import DataLoader
from allennlp.data.dataset_readers import TextClassificationJsonReader
from allennlp.data.tokenizers import Token
from allennlp.data.token_indexers import SingleIdTokenIndexer
from allennlp.models import BasicClassifier
from allennlp.modules.text_field_embedders import BasicTextFieldEmbedder
from allennlp.modules.token_embedders import Embedding
from allennlp.modules.seq2vec_encoders import CnnEncoder
from allennlp.modules.feedforward import FeedForward
from allennlp.training import GradientDescentTrainer
from allennlp.training.optimizers import AdamOptimizer

# 读取数据
reader = TextClassificationJsonReader(tokenizer=lambda x: [Token(word) for word in x.split()],
                                      token_indexers={"tokens": SingleIdTokenIndexer()})
train_data = reader.read("train.json")
valid_data = reader.read("valid.json")
test_data = reader.read("test.json")

# 构建模型
vocab_size = 10000
embed_dim = 100

token_embedding = Embedding(num_embeddings=vocab_size, embedding_dim=embed_dim)
word_embeddings = BasicTextFieldEmbedder({"tokens": token_embedding})

encoder = CnnEncoder(embedding_dim=embed_dim, num_filters=100, ngram_filter_sizes=[2, 3, 4, 5])
feedforward = FeedForward(input_dim=4 * 100, num_layers=2, hidden_dims=100, activations=ReLU())

model = BasicClassifier(
    word_embeddings=word_embeddings,
    encoder=encoder,
    feedforward=feedforward,
    num_classes=2
)

# 训练模型
optimizer = AdamOptimizer(model.parameters())
trainer = GradientDescentTrainer(model=model, optimizer=optimizer, data_loader=DataLoader(batch_size=32))
trainer.train()

# 测试模型
test_metrics = trainer.test()
print(test_metrics)

使用例子二:

from allennlp.predictors import Predictor

# 加载预训练的模型
model_path = "model.tar.gz"
predictor = Predictor.from_path(model_path, predictor_name="text_classifier")

# 预测文本分类
text = "这个电影真的很有意思!"
result = predictor.predict(text)

print(result)

使用例子三:

from allennlp.data import Instance
from allennlp.data.fields import TextField, LabelField
from allennlp.predictors import Predictor

# 构建一个新的示例
text = TextField([Token(word) for word in "这个电影真的很好看"], token_indexers={"tokens": SingleIdTokenIndexer()})
label = LabelField("positive")

instance = Instance({"text": text, "label": label})

# 加载预训练的模型
model_path = "model.tar.gz"
predictor = Predictor.from_path(model_path, predictor_name="text_classifier")

# 预测新的示例
result = predictor.predict_instance(instance)

print(result)

以上是使用AllenNLP构建中文文本分类模型的实例,包括了数据处理、模型构建、训练和测试、以及预测等步骤。你可以根据自己的数据和需求进行相应的调整和扩展。