使用Python实现CIFARNet()模型进行图像标签预测的实验研究
发布时间:2023-12-15 09:27:55
CIFARNet是一个经典的卷积神经网络模型,用于对CIFAR-10数据集中的图像进行分类预测。下面我将介绍如何使用Python实现CIFARNet模型,并进行图像标签预测的实验研究。
首先,我们需要导入必要的库和模块:
import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms
接下来,我们可以定义CIFARNet模型的结构。CIFARNet模型由多个卷积层、池化层和全连接层组成。这里我们使用了3个卷积层和2个全连接层。下面是CIFARNet模型的定义:
class CIFARNet(nn.Module):
def __init__(self, num_classes=10):
super(CIFARNet, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(128 * 4 * 4, 512)
self.fc2 = nn.Linear(512, num_classes)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = x.view(-1, 128 * 4 * 4)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
然后,我们可以对CIFAR-10数据集进行预处理。这里我们使用torchvision中的transform模块来进行数据预处理,包括数据归一化和数据增强,以提高模型的性能。
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform_train)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform_test)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128,
shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=128,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
接下来,我们可以定义优化器和损失函数:
net = CIFARNet()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = net.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
然后,我们可以进行模型的训练和测试:
def train(net, criterion, optimizer, trainloader, num_epochs):
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
def test(net, testloader):
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %.2f %%' % (100 * correct / total))
num_epochs = 10
train(net, criterion, optimizer, trainloader, num_epochs)
test(net, testloader)
以上就是使用Python实现CIFARNet模型进行图像标签预测的实验研究的示例。通过对CIFAR-10数据集的训练和测试,我们可以得到模型在测试集上的准确率。你也可以尝试调整模型的超参数和训练参数,以获取更好的性能。
