使用Python中的SSDInceptionV2FeatureExtractor()模型进行目标检测任务的结果
发布时间:2023-12-14 18:44:38
SSDInceptionV2FeatureExtractor()是TensorFlow中的一个预训练模型,用于目标检测任务。它是基于Inception V2网络结构构建的,结合了SSD(Single Shot MultiBox Detector)的思想,可以用来检测图片中的物体,并给出物体的位置和类别。
下面是一个使用SSDInceptionV2FeatureExtractor()模型进行目标检测任务的例子:
首先,我们需要导入相关的库:
import cv2 import numpy as np import tensorflow as tf from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as vis_util
接下来,我们需要加载模型和标签映射文件(label map file):
# 模型路径
MODEL_PATH = 'path_to_model/frozen_inference_graph.pb'
# 标签映射文件路径
LABEL_MAP_PATH = 'path_to_labels/label_map.pbtxt'
# 加载模型
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(MODEL_PATH, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# 加载标签映射文件
label_map = label_map_util.load_labelmap(LABEL_MAP_PATH)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=90, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
然后,我们可以使用加载的模型进行目标检测:
def detect_objects(image):
# 图片预处理
image_np_expanded = np.expand_dims(image, axis=0)
# 获取模型的输入和输出张量
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# 运行模型进行目标检测
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# 对结果进行可视化
vis_util.visualize_boxes_and_labels_on_image_array(
image,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
return image
最后,我们可以使用上述函数对一张图片进行目标检测并显示结果:
# 读取图片
image_path = 'path_to_image/image.jpg'
image = cv2.imread(image_path)
# 目标检测
output_image = detect_objects(image)
# 显示结果
cv2.imshow('Object Detection', output_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
以上就是使用SSDInceptionV2FeatureExtractor()模型进行目标检测任务的一个例子。通过加载模型和标签映射文件,运行目标检测函数,最后将结果可视化并显示在图片上,可以实现对图片中物体的检测。注意替换代码中的路径,将其指向实际的模型、标签映射文件和图片路径。
