构建对象检测图的_build_detection_graph()函数在Python中的应用
构建对象检测图的_build_detection_graph()函数是用于在TensorFlow框架中创建对象检测模型的函数。下面是_build_detection_graph()函数的应用示例:
"""
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
def _build_detection_graph():
# Load model and pre-trained weights
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_MODEL, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# Load label map and categories
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
return detection_graph, category_index
def detect_objects(image_path, detection_graph, category_index):
# Load image
image = Image.open(image_path)
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
# Get handles to input and output tensors
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
]:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(tensor_name)
# Run inference
output_dict = sess.run(tensor_dict, feed_dict={image_tensor: image_np_expanded})
# Convert output tensors to numpy arrays
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict['detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
# Visualize the results
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=8)
return image_np
# Constants
PATH_TO_MODEL = 'path/to/your/model.pb'
PATH_TO_LABELS = 'path/to/your/label_map.pbtxt'
NUM_CLASSES = 90
# Build detection graph and get category index
detection_graph, category_index = _build_detection_graph()
# Detect objects in an image
image_path = 'path/to/your/image.jpg'
detected_image = detect_objects(image_path, detection_graph, category_index)
# Display the detected image
plt.imshow(detected_image)
plt.show()
"""
上面的代码示例演示了如何使用_build_detection_graph()函数创建对象检测图,并使用detect_objects()函数从图中检测对象。在检测过程中,使用已加载的模型对输入图像进行推理,然后将检测结果可视化在图像上,并返回结果图像。最后,使用Matplotlib库显示检测到的图像。
需要注意的是,要运行以上示例代码,需要首先安装正确版本的TensorFlow和对象检测API,并准备相应的模型和标签文件,以及要进行对象检测的图像文件。
