欢迎访问宙启技术站
智能推送

构建对象检测图的_build_detection_graph()函数在Python中的应用

发布时间:2023-12-14 05:49:02

构建对象检测图的_build_detection_graph()函数是用于在TensorFlow框架中创建对象检测模型的函数。下面是_build_detection_graph()函数的应用示例:

"""

import tensorflow as tf

from object_detection.utils import label_map_util

from object_detection.utils import visualization_utils as vis_util

def _build_detection_graph():

    # Load model and pre-trained weights

    detection_graph = tf.Graph()

    with detection_graph.as_default():

        od_graph_def = tf.GraphDef()

        with tf.gfile.GFile(PATH_TO_MODEL, 'rb') as fid:

            serialized_graph = fid.read()

            od_graph_def.ParseFromString(serialized_graph)

            tf.import_graph_def(od_graph_def, name='')

    # Load label map and categories

    label_map = label_map_util.load_labelmap(PATH_TO_LABELS)

    categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)

    category_index = label_map_util.create_category_index(categories)

    return detection_graph, category_index

def detect_objects(image_path, detection_graph, category_index):

    # Load image

    image = Image.open(image_path)

    image_np = load_image_into_numpy_array(image)

    # Expand dimensions since the model expects images to have shape: [1, None, None, 3]

    image_np_expanded = np.expand_dims(image_np, axis=0)

    with detection_graph.as_default():

        with tf.Session(graph=detection_graph) as sess:

            # Get handles to input and output tensors

            ops = tf.get_default_graph().get_operations()

            all_tensor_names = {output.name for op in ops for output in op.outputs}

            tensor_dict = {}

            for key in [

                'num_detections', 'detection_boxes', 'detection_scores',

                'detection_classes', 'detection_masks'

            ]:

                tensor_name = key + ':0'

                if tensor_name in all_tensor_names:

                    tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(tensor_name)

            # Run inference

            output_dict = sess.run(tensor_dict, feed_dict={image_tensor: image_np_expanded})

            # Convert output tensors to numpy arrays

            output_dict['num_detections'] = int(output_dict['num_detections'][0])

            output_dict['detection_classes'] = output_dict['detection_classes'][0].astype(np.uint8)

            output_dict['detection_boxes'] = output_dict['detection_boxes'][0]

            output_dict['detection_scores'] = output_dict['detection_scores'][0]

            

            # Visualize the results

            vis_util.visualize_boxes_and_labels_on_image_array(

                image_np,

                output_dict['detection_boxes'],

                output_dict['detection_classes'],

                output_dict['detection_scores'],

                category_index,

                instance_masks=output_dict.get('detection_masks'),

                use_normalized_coordinates=True,

                line_thickness=8)

    return image_np

# Constants

PATH_TO_MODEL = 'path/to/your/model.pb'

PATH_TO_LABELS = 'path/to/your/label_map.pbtxt'

NUM_CLASSES = 90

# Build detection graph and get category index

detection_graph, category_index = _build_detection_graph()

# Detect objects in an image

image_path = 'path/to/your/image.jpg'

detected_image = detect_objects(image_path, detection_graph, category_index)

# Display the detected image

plt.imshow(detected_image)

plt.show()

"""

上面的代码示例演示了如何使用_build_detection_graph()函数创建对象检测图,并使用detect_objects()函数从图中检测对象。在检测过程中,使用已加载的模型对输入图像进行推理,然后将检测结果可视化在图像上,并返回结果图像。最后,使用Matplotlib库显示检测到的图像。

需要注意的是,要运行以上示例代码,需要首先安装正确版本的TensorFlow和对象检测API,并准备相应的模型和标签文件,以及要进行对象检测的图像文件。