Python中Vocabulary()类与word2vec算法的结合应用
发布时间:2023-12-13 15:22:17
在Python中,Vocabulary()类与word2vec算法可以结合使用来创建一个词汇表,并使用word2vec算法训练模型以得到每个单词的嵌入向量。这个词汇表可以用于许多自然语言处理任务,例如文本分类、命名实体识别和情感分析等。
下面是一个使用Vocabulary()类和word2vec算法的示例,以将电影评论分类为正面或负面:
1. 导入必要的库
from gensim.models import Word2Vec from gensim.models.callbacks import CallbackAny2Vec from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression
2. 定义一个回调类,用于跟踪Word2Vec模型的训练进度
class EpochLogger(CallbackAny2Vec):
def __init__(self):
self.epoch = 0
def on_epoch_end(self, model):
self.epoch += 1
print("Epoch #{} was trained.".format(self.epoch))
3. 准备数据
# 电影评论数据集,包含正面和负面评论
reviews = [
"I loved this movie! It was amazing.",
"The acting was terrible in this film.",
"This film had a great storyline.",
"The plot was confusing and hard to follow.",
"The cinematography was beautiful.",
"The dialogue was cheesy and unrealistic."
]
# 评论对应的标签,1表示正面,0表示负面
labels = [1, 0, 1, 0, 1, 0]
4. 将评论文本转换为词袋表示
vectorizer = CountVectorizer() X = vectorizer.fit_transform(reviews)
5. 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2)
6. 使用Vocabulary()类构建词汇表
vocab = Vocabulary() vocab.build_from_corpus(reviews)
7. 使用word2vec算法训练模型
model = Word2Vec(
sentences=vocab.sentences,
vector_size=100,
window=5,
min_count=1,
workers=4,
callbacks=[EpochLogger()]
)
8. 构建训练数据集的嵌入向量表示
X_train_embedded = []
for review in X_train:
embedded_review = []
for word in review.split():
if word in model.wv:
embedded_review.append(model.wv[word])
if len(embedded_review) > 0:
X_train_embedded.append(np.mean(embedded_review, axis=0))
else:
X_train_embedded.append(np.zeros(model.vector_size))
X_train_embedded = np.array(X_train_embedded)
9. 训练逻辑回归模型
classifier = LogisticRegression() classifier.fit(X_train_embedded, y_train)
10. 构建测试数据集的嵌入向量表示并进行预测
X_test_embedded = []
for review in X_test:
embedded_review = []
for word in review.split():
if word in model.wv:
embedded_review.append(model.wv[word])
if len(embedded_review) > 0:
X_test_embedded.append(np.mean(embedded_review, axis=0))
else:
X_test_embedded.append(np.zeros(model.vector_size))
X_test_embedded = np.array(X_test_embedded)
y_pred = classifier.predict(X_test_embedded)
11. 评估模型性能
accuracy = (y_pred == y_test).mean()
print("Accuracy: {}".format(accuracy))
通过上述步骤,我们使用Vocabulary()类构建了一个词汇表,并使用word2vec算法训练了一个模型,然后将评论转换为嵌入向量表示,并使用逻辑回归模型对评论进行分类。最后,我们评估了模型的准确性。
这个示例演示了Vocabulary()类与word2vec算法的结合应用。该方法可以扩展到其他自然语言处理任务,只需根据具体任务调整和优化模型和数据处理流程。
