基于Keras的tensorflow_backend模块进行图像目标检测
发布时间:2023-12-13 08:49:34
基于Keras的tensorflow_backend模块进行图像目标检测可以使用Faster R-CNN算法来实现。下面是一个使用Faster R-CNN算法进行图像目标检测的例子。
首先,我们需要导入所需的库和模块。我们将使用Keras的tensorflow_backend模块进行图像处理和建模,以及COCO数据集的一小部分数据用于训练和测试。
import numpy as np import tensorflow as tf import keras from keras import backend as K from keras.backend.tensorflow_backend import set_session from keras.models import Model from keras.layers import Input from keras.layers.convolutional import Conv2D from keras.layers.pooling import MaxPooling2D from keras.layers.core import Dense, Activation from keras.layers.merge import concatenate from keras.layers.recurrent import LSTM from keras.layers.wrappers import TimeDistributed from keras.optimizers import Adam from keras.utils import plot_model from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ModelCheckpoint from keras.layers.normalization import BatchNormalization from keras.layers import Flatten from keras.layers import GlobalAveragePooling2D import matplotlib.pyplot as plt import cv2 import random import os import sys import tarfile import urllib
接下来,我们需要进行一些配置。这包括指定GPU设备并设置Keras的图像数据格式。
# Specify GPU device
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# Set Keras image data format
K.set_image_data_format('channels_last')
然后,我们需要定义Faster R-CNN算法的网络结构。这包括两个子网络:一个用于生成候选区域,另一个用于分类和回归预测。
# Construct region proposal network (RPN)
input_shape = (None, None, 3)
inp = Input(shape=input_shape)
shared = Conv2D(128, (3, 3), padding='same', activation='relu', kernel_initializer='normal')(inp)
rpn_cls = Conv2D(18, (1, 1), activation='sigmoid', kernel_initializer='uniform')(shared)
rpn_reg = Conv2D(36, (1, 1), activation='linear', kernel_initializer='zero')(shared)
# Construct region of interest (ROI) pooling layer
roi_input = Input(shape=(7, 7, 256))
nb_roi = 64
pool = MaxPooling2D(pool_size=(2, 2))(roi_input)
x = TimeDistributed(Flatten())(pool)
shared = Dense(256)(x)
shared = Activation('relu')(shared)
# Construct classification and regression layers
cls_pred = Dense(21, activation='softmax')(shared)
reg_pred = Dense(84, activation='linear')(shared)
# Create the models
model_rpn = Model(inp, [rpn_cls, rpn_reg])
model_roi = Model(roi_input, cls_pred)
model_all = Model([inp, roi_input], [rpn_cls, rpn_reg, cls_pred, reg_pred])
接下来,我们需要定义Faster R-CNN算法的损失函数,包括分类和回归损失。
# Define RPN losses
rpn_cls_loss = lambda y_true, y_pred: K.sum(y_true[:, :, :, :2] * K.binary_crossentropy(y_true[:, :, :, 2:], y_pred), axis=-1)
rpn_reg_loss = lambda y_true, y_pred: K.sum(y_true[:, :, :, :36] * K.abs(y_true[:, :, :, 36:] - y_pred), axis=-1)
# Define ROI losses
roi_cls_loss = lambda y_true, y_pred: K.sum(y_true * K.binary_crossentropy(y_true, y_pred), axis=-1)
# Compile the models
model_rpn.compile(optimizer=Adam(lr=1e-5), loss=[rpn_cls_loss, rpn_reg_loss])
model_roi.compile(optimizer=Adam(lr=1e-5), loss=roi_cls_loss)
model_all.compile(optimizer=Adam(lr=1e-5),
loss=[rpn_cls_loss, rpn_reg_loss, roi_cls_loss, 'mse'],
loss_weights=[1, 1, 1, 1])
接下来,我们需要准备数据集。这包括下载和解压COCO数据集的一小部分数据,然后将其转换为训练和测试集。
# Download and extract COCO dataset
url = "http://images.cocodataset.org/zips/train2017.zip"
urllib.request.urlretrieve(url, "train2017.zip")
tar = tarfile.open("train2017.zip")
tar.extractall()
tar.close()
# Define training and testing directories
train_dir = "train2017"
test_dir = "test2017"
# Define image dimensions
img_width, img_height = 300, 300
然后,我们可以定义数据生成器和预处理函数,以及用于评估性能的函数。
# Define data generator and preprocessing function
datagen = ImageDataGenerator(rescale=1. / 255)
def preprocess_input(x):
x = x[:, :, ::-1]
x[:, :, 0] -= 103.939
x[:, :, 1] -= 116.779
x[:, :, 2] -= 123.68
return x
# Define evaluation function
def evaluate(test_images, test_annotations, iou_threshold=0.5):
detections = []
for i, img_path in enumerate(test_images):
img = cv2.imread(img_path)
img = cv2.resize(img, (img_width, img_height))
img = preprocess_input(img)
img = np.expand_dims(img, axis=0)
rpn_cls, rpn_reg, cls_pred, reg_pred = model_all.predict([img, np.zeros((1, 7, 7, 256))])
boxes, scores, labels = utils.get_detections(rpn_cls, rpn_reg, cls_pred, reg_pred)
detections.append({'boxes': boxes, 'scores': scores, 'labels': labels})
return utils.calculate_map(test_annotations, detections, iou_threshold)
最后,我们可以开始训练和测试模型。
# Train the model
model_all.fit_generator(datagen.flow_from_directory(train_dir, target_size=(img_width, img_height),
batch_size=8, class_mode=None),
steps_per_epoch=5000,
epochs=5,
callbacks=[ModelCheckpoint('weights.h5', save_best_only=True, save_weights_only=True)])
# Load the best weights
model_all.load_weights('weights.h5')
# Evaluate the performance
test_images = [os.path.join(test_dir, f) for f in os.listdir(test_dir) if f.endswith('.jpg')]
test_annotations = [os.path.join(test_dir, f.replace('.jpg', '.xml')) for f in os.listdir(test_dir) if f.endswith('.jpg')]
map_score = evaluate(test_images, test_annotations)
print('mAP: {}'.format(map_score))
以上是一个使用Keras的tensorflow_backend模块进行图像目标检测的例子。我们首先定义了Faster R-CNN算法的网络结构,然后定义了损失函数,接着准备了数据集,最后进行了训练和测试。通过评估函数,我们可以得到模型的mAP得分,评估模型的性能。
