欢迎访问宙启技术站
智能推送

Python代码示例:随机生成20个object_detection.protos.optimizer_pb2LearningRate()实例

发布时间:2023-12-12 11:06:51

下面是一个示例代码,用于随机生成20个object_detection.protos.optimizer_pb2.LearningRate()实例,并包含使用例子:

import random
from object_detection.protos import optimizer_pb2

def generate_learning_rates(num_instances):
    learning_rates = []
    for _ in range(num_instances):
        learning_rate = optimizer_pb2.LearningRate()

        # 随机设置learning_rate的属性
        learning_rate.type = random.choice(['constant', 'exponential', 'polynomial'])
        learning_rate.constant_learning_rate = random.uniform(0.01, 0.1)
        learning_rate.exponential_decay_learning_rate = random.uniform(0.01, 0.1)
        learning_rate.exponential_decay_rate = random.uniform(0.1, 0.9)
        learning_rate.polynomial_learning_rate = random.uniform(0.01, 0.1)
        learning_rate.polynomial_end_learning_rate = random.uniform(0.001, 0.01)
        learning_rate.polynomial_decay_steps = random.randint(100, 1000)
        learning_rate.warmup_learning_rate = random.uniform(0.001, 0.01)
        learning_rate.warmup_steps = random.randint(100, 1000)

        learning_rates.append(learning_rate)
    return learning_rates

# 生成20个LearningRate实例
learning_rates = generate_learning_rates(20)

# 打印每个实例的属性
for i, learning_rate in enumerate(learning_rates):
    print(f"Learning Rate {i+1}")
    print(f"Type: {learning_rate.type}")
    print(f"Constant Learning Rate: {learning_rate.constant_learning_rate}")
    print(f"Exponential Decay Learning Rate: {learning_rate.exponential_decay_learning_rate}")
    print(f"Exponential Decay Rate: {learning_rate.exponential_decay_rate}")
    print(f"Polynomial Learning Rate: {learning_rate.polynomial_learning_rate}")
    print(f"Polynomial End Learning Rate: {learning_rate.polynomial_end_learning_rate}")
    print(f"Polynomial Decay Steps: {learning_rate.polynomial_decay_steps}")
    print(f"Warmup Learning Rate: {learning_rate.warmup_learning_rate}")
    print(f"Warmup Steps: {learning_rate.warmup_steps}")
    print()

上述代码使用random模块生成了一些随机的属性值,并创建了20个object_detection.protos.optimizer_pb2.LearningRate()实例。然后,它通过打印每个实例的属性值来展示每个实例的具体内容。

你可以根据需要自定义属性值的范围和生成的实例数量。