Python代码示例:随机生成20个object_detection.protos.optimizer_pb2LearningRate()实例
发布时间:2023-12-12 11:06:51
下面是一个示例代码,用于随机生成20个object_detection.protos.optimizer_pb2.LearningRate()实例,并包含使用例子:
import random
from object_detection.protos import optimizer_pb2
def generate_learning_rates(num_instances):
learning_rates = []
for _ in range(num_instances):
learning_rate = optimizer_pb2.LearningRate()
# 随机设置learning_rate的属性
learning_rate.type = random.choice(['constant', 'exponential', 'polynomial'])
learning_rate.constant_learning_rate = random.uniform(0.01, 0.1)
learning_rate.exponential_decay_learning_rate = random.uniform(0.01, 0.1)
learning_rate.exponential_decay_rate = random.uniform(0.1, 0.9)
learning_rate.polynomial_learning_rate = random.uniform(0.01, 0.1)
learning_rate.polynomial_end_learning_rate = random.uniform(0.001, 0.01)
learning_rate.polynomial_decay_steps = random.randint(100, 1000)
learning_rate.warmup_learning_rate = random.uniform(0.001, 0.01)
learning_rate.warmup_steps = random.randint(100, 1000)
learning_rates.append(learning_rate)
return learning_rates
# 生成20个LearningRate实例
learning_rates = generate_learning_rates(20)
# 打印每个实例的属性
for i, learning_rate in enumerate(learning_rates):
print(f"Learning Rate {i+1}")
print(f"Type: {learning_rate.type}")
print(f"Constant Learning Rate: {learning_rate.constant_learning_rate}")
print(f"Exponential Decay Learning Rate: {learning_rate.exponential_decay_learning_rate}")
print(f"Exponential Decay Rate: {learning_rate.exponential_decay_rate}")
print(f"Polynomial Learning Rate: {learning_rate.polynomial_learning_rate}")
print(f"Polynomial End Learning Rate: {learning_rate.polynomial_end_learning_rate}")
print(f"Polynomial Decay Steps: {learning_rate.polynomial_decay_steps}")
print(f"Warmup Learning Rate: {learning_rate.warmup_learning_rate}")
print(f"Warmup Steps: {learning_rate.warmup_steps}")
print()
上述代码使用random模块生成了一些随机的属性值,并创建了20个object_detection.protos.optimizer_pb2.LearningRate()实例。然后,它通过打印每个实例的属性值来展示每个实例的具体内容。
你可以根据需要自定义属性值的范围和生成的实例数量。
