使用Python编写的torchvision.modelsmobilenet_v2模型的图像分类器训练过程
发布时间:2023-12-12 08:30:53
使用Python编写的torchvision.models.mobilenet_v2模型的图像分类器训练过程如下:
1. 导入必要的库和模块:
import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, models, transforms
2. 定义数据预处理的转换:
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
3. 加载数据集并进行数据增强和预处理:
data_dir = 'path_to_data_directory'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4) for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
4. 加载预训练的MobileNetV2模型:
model = models.mobilenet_v2(pretrained=True)
5. 将模型的最后一层修改为满足新数据集的分类数量:
num_ftrs = model.classifier[1].in_features model.classifier[1] = nn.Linear(num_ftrs, len(class_names))
6. 定义损失函数和优化器:
criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
7. 定义训练函数:
def train_model(model, criterion, optimizer, num_epochs=25):
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
for phase in ['train', 'val']:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
train_model(model, criterion, optimizer, num_epochs=25)
这个训练过程将会对MobileNetV2模型进行微调,并使用训练集和验证集进行训练和评估。训练会在每个epoch中输出当前的训练损失和准确率,以及验证损失和准确率。整个训练过程将会持续25个epoch。
使用示例:
if __name__ == '__main__':
train_model(model, criterion, optimizer, num_epochs=25)
请替换 "path_to_data_directory" 为你的数据目录的路径,并确保该目录下包含 "train" 和 "val" 两个子目录,分别存放训练集和验证集的图像数据。训练过程将会使用默认的GPU加速(如果可用),否则会使用CPU。
