欢迎访问宙启技术站
智能推送

使用Python编写的torchvision.modelsmobilenet_v2模型的图像分类器训练过程

发布时间:2023-12-12 08:30:53

使用Python编写的torchvision.models.mobilenet_v2模型的图像分类器训练过程如下:

1. 导入必要的库和模块:

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, models, transforms

2. 定义数据预处理的转换:

data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

3. 加载数据集并进行数据增强和预处理:

data_dir = 'path_to_data_directory'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4) for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes

4. 加载预训练的MobileNetV2模型:

model = models.mobilenet_v2(pretrained=True)

5. 将模型的最后一层修改为满足新数据集的分类数量:

num_ftrs = model.classifier[1].in_features
model.classifier[1] = nn.Linear(num_ftrs, len(class_names))

6. 定义损失函数和优化器:

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

7. 定义训练函数:

def train_model(model, criterion, optimizer, num_epochs=25):
    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        for phase in ['train', 'val']:
            if phase == 'train':
                model.train()
            else:
                model.eval()

            running_loss = 0.0
            running_corrects = 0

            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                optimizer.zero_grad()

                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)

                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase]

            print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))

train_model(model, criterion, optimizer, num_epochs=25)

这个训练过程将会对MobileNetV2模型进行微调,并使用训练集和验证集进行训练和评估。训练会在每个epoch中输出当前的训练损失和准确率,以及验证损失和准确率。整个训练过程将会持续25个epoch。

使用示例:

if __name__ == '__main__':
    train_model(model, criterion, optimizer, num_epochs=25)

请替换 "path_to_data_directory" 为你的数据目录的路径,并确保该目录下包含 "train" 和 "val" 两个子目录,分别存放训练集和验证集的图像数据。训练过程将会使用默认的GPU加速(如果可用),否则会使用CPU。