欢迎访问宙启技术站
智能推送

使用Python语言编写的ResNetV1神经网络模型

发布时间:2023-12-11 14:51:23

ResNet (Residual Network) 是一种深度残差网络,它通过引入 shortcut connection(跳跃连接)来解决深度网络中的梯度消失和梯度爆炸问题。ResNetV1 是 ResNet 的 个版本,它包含了常用的残差模块基础架构。

在 Python 中,我们可以使用 TensorFlow 框架来实现 ResNetV1 神经网络模型。下面是一个使用 Python 编写的 ResNetV1 模型的示例代码:

import tensorflow as tf
from tensorflow.keras import layers

# 定义残差模块
def residual_block(inputs, filters, strides=1):
    identity = inputs
  
    # 3x3 卷积层
    x = layers.Conv2D(filters=filters, kernel_size=(3, 3), strides=strides, padding='same')(inputs)
    x = layers.BatchNormalization()(x)
    x = layers.ReLU()(x)
    
    # 3x3 卷积层
    x = layers.Conv2D(filters=filters, kernel_size=(3, 3), strides=1, padding='same')(x)
    x = layers.BatchNormalization()(x)
    
    # 跳跃连接
    if strides != 1:
        identity = layers.Conv2D(filters=filters, kernel_size=(1, 1), strides=strides, padding='same')(identity)
        identity = layers.BatchNormalization()(identity)
      
    x = layers.add([x, identity])
    x = layers.ReLU()(x)
    return x

# 定义 ResNetV1 网络模型
def resnet_v1(input_shape, num_classes):
    inputs = tf.keras.Input(shape=input_shape)
  
    x = layers.Conv2D(filters=64, kernel_size=(7, 7), strides=2, padding='same')(inputs)
    x = layers.BatchNormalization()(x)
    x = layers.ReLU()(x)
  
    x = layers.MaxPooling2D(pool_size=(3, 3), strides=2, padding='same')(x)
  
    # 残差模块堆叠
    x = residual_block(x, filters=64, strides=1)
    x = residual_block(x, filters=64, strides=1)
    x = residual_block(x, filters=64, strides=1)
  
    x = residual_block(x, filters=128, strides=2)
    x = residual_block(x, filters=128, strides=1)
    x = residual_block(x, filters=128, strides=1)
    x = residual_block(x, filters=128, strides=1)
  
    x = residual_block(x, filters=256, strides=2)
    x = residual_block(x, filters=256, strides=1)
    x = residual_block(x, filters=256, strides=1)
    x = residual_block(x, filters=256, strides=1)
    x = residual_block(x, filters=256, strides=1)
    x = residual_block(x, filters=256, strides=1)
  
    x = residual_block(x, filters=512, strides=2)
    x = residual_block(x, filters=512, strides=1)
    x = residual_block(x, filters=512, strides=1)
  
    x = layers.GlobalAveragePooling2D()(x)
  
    outputs = layers.Dense(num_classes, activation='softmax')(x)
  
    model = tf.keras.Model(inputs=inputs, outputs=outputs)
    return model

# 使用 ResNetV1 模型进行 CIFAR10 数据集的分类任务
model = resnet_v1(input_shape=(32, 32, 3), num_classes=10)
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()

# 加载 CIFAR10 数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
x_train = x_train / 255.0
x_test = x_test / 255.0

# 训练模型
model.fit(x_train, y_train, batch_size=64, epochs=10, validation_data=(x_test, y_test))

在上述代码中,我们首先定义了残差模块 residual_block,之后通过堆叠不同深度的残差模块构建了 ResNetV1 网络模型 resnet_v1。最后,我们使用 CIFAR10 数据集进行训练,并输出了模型的训练结果。

这是一个简单的示例,帮助你了解如何使用 Python 编写并使用 ResNetV1 神经网络模型。你可以根据实际需求调整网络深度和其他参数来构建更复杂的模型,并在各种计算机视觉任务中应用。