Python实现BertAdam()算法用于中文文本分类
发布时间:2023-12-11 14:23:55
BertAdam算法是Adam优化器的一种变种,专门用于Bert模型的训练。在中文文本分类任务中,我们可以使用BertAdam算法来提高模型的训练效果。下面是一个使用Python实现的BertAdam算法的例子。
首先,我们需要安装需要的库。BertAdam算法需要使用PyTorch和transformers库。
pip install torch pip install transformers
接下来,我们需要加载Bert模型和tokenizer。这里我们以bert-base-chinese为例。
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
model = BertModel.from_pretrained('bert-base-chinese')
接下来,我们需要加载训练集和测试集的数据。这里以一个简单的文本分类任务为例,数据集保存在train.txt和test.txt文件中,每行是一个样本文本和对应的标签,以制表符分隔。
def load_dataset(file_path):
texts = []
labels = []
with open(file_path, 'r', encoding='utf-8') as f:
for line in f:
text, label = line.strip().split('\t')
texts.append(text)
labels.append(int(label))
return texts, labels
train_texts, train_labels = load_dataset('train.txt')
test_texts, test_labels = load_dataset('test.txt')
然后,我们需要对文本进行tokenize和编码处理。
def encode_texts(texts, tokenizer):
input_ids = []
attention_masks = []
for text in texts:
encoded = tokenizer.encode_plus(
text,
add_special_tokens=True,
max_length=128,
pad_to_max_length=True,
return_attention_mask=True,
return_tensors='pt'
)
input_ids.append(encoded['input_ids'])
attention_masks.append(encoded['attention_mask'])
input_ids = torch.cat(input_ids, dim=0)
attention_masks = torch.cat(attention_masks, dim=0)
return input_ids, attention_masks
train_input_ids, train_attention_masks = encode_texts(train_texts, tokenizer)
test_input_ids, test_attention_masks = encode_texts(test_texts, tokenizer)
接下来,我们需要定义一个数据集类,用于加载训练集和测试集的数据。
from torch.utils.data import Dataset
class TextDataset(Dataset):
def __init__(self, input_ids, attention_masks, labels):
self.input_ids = input_ids
self.attention_masks = attention_masks
self.labels = labels
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
input_id = self.input_ids[idx]
attention_mask = self.attention_masks[idx]
label = self.labels[idx]
return input_id, attention_mask, label
train_dataset = TextDataset(train_input_ids, train_attention_masks, train_labels)
test_dataset = TextDataset(test_input_ids, test_attention_masks, test_labels)
然后,我们可以定义一个Bert分类模型,并使用BertAdam算法进行训练。
import torch
import torch.nn as nn
from transformers import BertPreTrainedModel, BertModel, BertConfig
class BertClassifier(BertPreTrainedModel):
def __init__(self, config):
super(BertClassifier, self).__init__(config)
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, input_ids, attention_mask=None):
_, pooled_output = self.bert(input_ids, attention_mask=attention_mask)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
return logits
model = BertClassifier.from_pretrained('bert-base-chinese')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
optimizer = transformers.AdamW(model.parameters(), lr=2e-5)
然后,我们可以定义训练和评估函数。
def train(model, dataloader, optimizer, device):
model.train()
total_loss = 0
for input_ids, attention_masks, labels in dataloader:
input_ids = input_ids.to(device)
attention_masks = attention_masks.to(device)
labels = labels.to(device)
optimizer.zero_grad()
loss, _ = model(input_ids=input_ids, attention_mask=attention_masks, labels=labels)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
total_loss += loss.item()
return total_loss / len(dataloader)
def evaluate(model, dataloader, device):
model.eval()
total_loss = 0
correct = 0
with torch.no_grad():
for input_ids, attention_masks, labels in dataloader:
input_ids = input_ids.to(device)
attention_masks = attention_masks.to(device)
labels = labels.to(device)
loss, logits = model(input_ids=input_ids, attention_mask=attention_masks, labels=labels)
total_loss += loss.item()
_, predicted = torch.max(logits, 1)
correct += (predicted == labels).sum().item()
return total_loss / len(dataloader), correct / len(dataloader.dataset)
最后,我们可以进行模型的训练和评估。
from torch.utils.data import DataLoader
train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False)
num_epochs = 5
for epoch in range(num_epochs):
train_loss = train(model, train_dataloader, optimizer, device)
test_loss, test_accuracy = evaluate(model, test_dataloader, device)
print('Epoch: {}, Train Loss: {:.4f}, Test Loss: {:.4f}, Test Accuracy: {:.4f}'.format(epoch+1, train_loss, test_loss, test_accuracy))
以上就是使用Python实现BertAdam算法用于中文文本分类的例子。你可以根据自己的数据集和模型进行相应的调整和修改。注意,该例子仅供参考,请根据具体情况适配你的代码。
