利用Python编写的StopAfterNEvalsHook函数:生成20条随机标题示例
发布时间:2023-12-11 13:48:55
下面是一个利用Python编写的StopAfterNEvalsHook函数的示例代码:
import torch
import torchvision
from torch import nn, optim
from torch.utils.data import DataLoader
from torchvision import transforms
from torch.utils.data import random_split
# 定义自定义的数据集类
class CustomDataset(torch.utils.data.Dataset):
def __init__(self, samples):
self.samples = samples
def __getitem__(self, idx):
return self.samples[idx]
def __len__(self):
return len(self.samples)
# 自定义停止训练的Hook
class StopAfterNEvalsHook:
def __init__(self, n_evals):
self.n_evals = n_evals
self.eval_count = 0
def __call__(self, trainer):
self.eval_count += 1
if self.eval_count >= self.n_evals:
trainer.should_stop = True
# 创建随机标题数据集
random_titles = [
"How to improve your memory",
"The benefits of regular exercise",
"Efficient ways to lose weight",
"Tips for stress management",
"10 healthy breakfast ideas",
"The importance of a balanced diet",
"Ways to boost your productivity",
"The impact of social media on mental health",
"How to overcome procrastination",
"Why a good night's sleep is essential",
"The benefits of meditation",
"Tips for effective time management",
"Healthy habits for a happier life",
"Ways to improve your communication skills",
"The power of positive thinking",
"Effective strategies for goal setting",
"The importance of self-care",
"How to develop a growth mindset",
"Tips for better concentration",
"The role of gratitude in happiness"
]
# 创建自定义数据集实例
dataset = CustomDataset(random_titles)
# 将数据集划分为训练集和验证集
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
# 创建DataLoader加载器
train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=4, shuffle=False)
# 定义模型架构
class Model(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(Model, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.fc2(x)
return x
# 创建模型实例
input_size = len(max(random_titles, key=len))
hidden_size = 16
output_size = 2
model = Model(input_size, hidden_size, output_size)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 定义训练器
class Trainer:
def __init__(self,
model,
criterion,
optimizer,
train_loader,
val_loader,
stop_hook=None,
num_epochs=10):
self.model = model
self.criterion = criterion
self.optimizer = optimizer
self.train_loader = train_loader
self.val_loader = val_loader
self.stop_hook = stop_hook
self.num_epochs = num_epochs
self.should_stop = False
def train(self):
for epoch in range(self.num_epochs):
if self.should_stop:
break
# 训练模型
self.model.train()
for inputs in self.train_loader:
self.optimizer.zero_grad()
outputs = self.model(inputs)
loss = self.criterion(outputs, labels)
loss.backward()
self.optimizer.step()
# 模型评估
if epoch % 5 == 0:
self.model.eval()
for inputs in self.val_loader:
outputs = self.model(inputs)
_, predicted = torch.max(outputs.data, 1)
accuracy = (predicted == labels).sum().item() / labels.size(0)
print('Epoch [{}/{}], Loss: {:.4f}, Accuracy: {:.2f}%'
.format(epoch + 1, self.num_epochs, loss.item(), accuracy * 100))
if self.stop_hook is not None:
self.stop_hook(self)
# 创建训练器实例并开始训练
stop_hook = StopAfterNEvalsHook(n_evals=20)
trainer = Trainer(model, criterion, optimizer, train_loader, val_loader, stop_hook=stop_hook, num_epochs=100)
trainer.train()
以上示例代码演示了如何利用自定义的StopAfterNEvalsHook函数来控制训练的停止。在训练过程中,每经过n_evals次评估,训练器将停止训练。在示例中,设置n_evals为20,即代表训练器将在执行20次评估后停止训练。
请注意,以上示例代码并未完整实现数据集加载、输入处理和标签定义等功能。你可以根据实际需求进行适当修改和补充。
