欢迎访问宙启技术站
智能推送

使用Python快速生成20个models()模型

发布时间:2023-12-11 10:09:04

在Python中,我们可以使用模块的方式来组织和管理代码。模块是一个文件,其中定义了一些函数、类和变量,可以在其他程序中导入并重复使用。下面是使用Python快速生成20个模型的示例。

1. 线性回归模型:

from sklearn.linear_model import LinearRegression

model = LinearRegression()
# 使用用例:
x_train = [[0], [1], [2]]
y_train = [0, 1, 2]
model.fit(x_train, y_train)
y_pred = model.predict([[3]])
print(y_pred)

2. 逻辑回归模型:

from sklearn.linear_model import LogisticRegression

model = LogisticRegression()
# 使用用例:
x_train = [[0], [1], [2]]
y_train = [0, 1, 0]
model.fit(x_train, y_train)
y_pred = model.predict([[3]])
print(y_pred)

3. 决策树模型:

from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier()
# 使用用例:
x_train = [[0], [1], [2]]
y_train = [0, 1, 1]
model.fit(x_train, y_train)
y_pred = model.predict([[3]])
print(y_pred)

4. 随机森林模型:

from sklearn.ensemble import RandomForestRegressor

model = RandomForestRegressor()
# 使用用例:
x_train = [[0], [1], [2]]
y_train = [0, 1, 2]
model.fit(x_train, y_train)
y_pred = model.predict([[3]])
print(y_pred)

5. 支持向量机模型:

from sklearn.svm import SVC

model = SVC()
# 使用用例:
x_train = [[0], [1], [2]]
y_train = [0, 1, 1]
model.fit(x_train, y_train)
y_pred = model.predict([[3]])
print(y_pred)

6. K近邻模型:

from sklearn.neighbors import KNeighborsClassifier

model = KNeighborsClassifier()
# 使用用例:
x_train = [[0], [1], [2]]
y_train = [0, 1, 1]
model.fit(x_train, y_train)
y_pred = model.predict([[3]])
print(y_pred)

7. 主成分分析模型:

from sklearn.decomposition import PCA

model = PCA()
# 使用用例:
x_train = [[0, 0], [1, 1], [1, 0]]
model.fit(x_train)
x_transformed = model.transform([[2, 2]])
print(x_transformed)

8. 神经网络模型:

from sklearn.neural_network import MLPClassifier

model = MLPClassifier()
# 使用用例:
x_train = [[0], [1], [2]]
y_train = [0, 1, 1]
model.fit(x_train, y_train)
y_pred = model.predict([[3]])
print(y_pred)

9. 朴素贝叶斯模型:

from sklearn.naive_bayes import GaussianNB

model = GaussianNB()
# 使用用例:
x_train = [[0], [1], [2]]
y_train = [0, 1, 1]
model.fit(x_train, y_train)
y_pred = model.predict([[3]])
print(y_pred)

10. 高斯过程模型:

from sklearn.gaussian_process import GaussianProcessRegressor

model = GaussianProcessRegressor()
# 使用用例:
x_train = [[0], [1], [2]]
y_train = [0, 1, 2]
model.fit(x_train, y_train)
y_pred = model.predict([[3]])
print(y_pred)

11. 卡方特征选择模型:

from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2

model = SelectKBest(score_func=chi2, k=1)
# 使用用例:
x_train = [[0], [1], [2]]
y_train = [0, 1, 1]
x_selected = model.fit_transform(x_train, y_train)
print(x_selected)

12. AdaBoost模型:

from sklearn.ensemble import AdaBoostClassifier

model = AdaBoostClassifier()
# 使用用例:
x_train = [[0], [1], [2]]
y_train = [0, 1, 0]
model.fit(x_train, y_train)
y_pred = model.predict([[3]])
print(y_pred)

13. XGBoost模型:

from xgboost import XGBClassifier

model = XGBClassifier()
# 使用用例:
x_train = [[0], [1], [2]]
y_train = [0, 1, 1]
model.fit(x_train, y_train)
y_pred = model.predict([[3]])
print(y_pred)

14. AdaBoost回归模型:

from sklearn.ensemble import AdaBoostRegressor

model = AdaBoostRegressor()
# 使用用例:
x_train = [[0], [1], [2]]
y_train = [0, 1, 2]
model.fit(x_train, y_train)
y_pred = model.predict([[3]])
print(y_pred)

15. 聚类模型:

from sklearn.cluster import KMeans

model = KMeans(n_clusters=2)
# 使用用例:
x_train = [[0], [1], [2]]
model.fit(x_train)
y_pred = model.predict([[3]])
print(y_pred)

16. 梯度提升回归模型:

from sklearn.ensemble import GradientBoostingRegressor

model = GradientBoostingRegressor()
# 使用用例:
x_train = [[0], [1], [2]]
y_train = [0, 1, 2]
model.fit(x_train, y_train)
y_pred = model.predict([[3]])
print(y_pred)

17. 单层神经网络模型:

from sklearn.linear_model import Perceptron

model = Perceptron()
# 使用用例:
x_train = [[0], [1], [2]]
y_train = [0, 1, 1]
model.fit(x_train, y_train)
y_pred = model.predict([[3]])
print(y_pred)

18. 线性判别分析模型:

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

model = LinearDiscriminantAnalysis()
# 使用用例:
x_train = [[0, 0], [1, 1], [1, 0]]
y_train = [0, 1, 1]
model.fit(x_train, y_train)
y_pred = model.predict([[2, 2]])
print(y_pred)

19. 高斯混合模型:

from sklearn.mixture import GaussianMixture

model = GaussianMixture(n_components=2)
# 使用用例:
x_train = [[0], [1], [2]]
model.fit(x_train)
y_pred = model.predict([[3]])
print(y_pred)

20. 线性判别分析正则化模型:

from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

model = QuadraticDiscriminantAnalysis(reg_param=0.5)
# 使用用例:
x_train = [[0, 0], [1, 1], [1, 0]]
y_train = [0, 1, 1]
model.fit(x_train, y_train)
y_pred = model.predict([[2, 2]])
print(y_pred)

这是20个常见的机器学习模型示例,每个模型都有一个使用用例,用于展示如何在Python中创建和使用这些模型。你可以根据自己的需求选择适合的模型,并根据需要进行参数调整和优化。通过使用这些模型,你可以了解和应用不同类型的机器学习算法,以解决现实世界的问题。