使用Python快速生成20个models()模型
发布时间:2023-12-11 10:09:04
在Python中,我们可以使用模块的方式来组织和管理代码。模块是一个文件,其中定义了一些函数、类和变量,可以在其他程序中导入并重复使用。下面是使用Python快速生成20个模型的示例。
1. 线性回归模型:
from sklearn.linear_model import LinearRegression model = LinearRegression() # 使用用例: x_train = [[0], [1], [2]] y_train = [0, 1, 2] model.fit(x_train, y_train) y_pred = model.predict([[3]]) print(y_pred)
2. 逻辑回归模型:
from sklearn.linear_model import LogisticRegression model = LogisticRegression() # 使用用例: x_train = [[0], [1], [2]] y_train = [0, 1, 0] model.fit(x_train, y_train) y_pred = model.predict([[3]]) print(y_pred)
3. 决策树模型:
from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier() # 使用用例: x_train = [[0], [1], [2]] y_train = [0, 1, 1] model.fit(x_train, y_train) y_pred = model.predict([[3]]) print(y_pred)
4. 随机森林模型:
from sklearn.ensemble import RandomForestRegressor model = RandomForestRegressor() # 使用用例: x_train = [[0], [1], [2]] y_train = [0, 1, 2] model.fit(x_train, y_train) y_pred = model.predict([[3]]) print(y_pred)
5. 支持向量机模型:
from sklearn.svm import SVC model = SVC() # 使用用例: x_train = [[0], [1], [2]] y_train = [0, 1, 1] model.fit(x_train, y_train) y_pred = model.predict([[3]]) print(y_pred)
6. K近邻模型:
from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier() # 使用用例: x_train = [[0], [1], [2]] y_train = [0, 1, 1] model.fit(x_train, y_train) y_pred = model.predict([[3]]) print(y_pred)
7. 主成分分析模型:
from sklearn.decomposition import PCA model = PCA() # 使用用例: x_train = [[0, 0], [1, 1], [1, 0]] model.fit(x_train) x_transformed = model.transform([[2, 2]]) print(x_transformed)
8. 神经网络模型:
from sklearn.neural_network import MLPClassifier model = MLPClassifier() # 使用用例: x_train = [[0], [1], [2]] y_train = [0, 1, 1] model.fit(x_train, y_train) y_pred = model.predict([[3]]) print(y_pred)
9. 朴素贝叶斯模型:
from sklearn.naive_bayes import GaussianNB model = GaussianNB() # 使用用例: x_train = [[0], [1], [2]] y_train = [0, 1, 1] model.fit(x_train, y_train) y_pred = model.predict([[3]]) print(y_pred)
10. 高斯过程模型:
from sklearn.gaussian_process import GaussianProcessRegressor model = GaussianProcessRegressor() # 使用用例: x_train = [[0], [1], [2]] y_train = [0, 1, 2] model.fit(x_train, y_train) y_pred = model.predict([[3]]) print(y_pred)
11. 卡方特征选择模型:
from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 model = SelectKBest(score_func=chi2, k=1) # 使用用例: x_train = [[0], [1], [2]] y_train = [0, 1, 1] x_selected = model.fit_transform(x_train, y_train) print(x_selected)
12. AdaBoost模型:
from sklearn.ensemble import AdaBoostClassifier model = AdaBoostClassifier() # 使用用例: x_train = [[0], [1], [2]] y_train = [0, 1, 0] model.fit(x_train, y_train) y_pred = model.predict([[3]]) print(y_pred)
13. XGBoost模型:
from xgboost import XGBClassifier model = XGBClassifier() # 使用用例: x_train = [[0], [1], [2]] y_train = [0, 1, 1] model.fit(x_train, y_train) y_pred = model.predict([[3]]) print(y_pred)
14. AdaBoost回归模型:
from sklearn.ensemble import AdaBoostRegressor model = AdaBoostRegressor() # 使用用例: x_train = [[0], [1], [2]] y_train = [0, 1, 2] model.fit(x_train, y_train) y_pred = model.predict([[3]]) print(y_pred)
15. 聚类模型:
from sklearn.cluster import KMeans model = KMeans(n_clusters=2) # 使用用例: x_train = [[0], [1], [2]] model.fit(x_train) y_pred = model.predict([[3]]) print(y_pred)
16. 梯度提升回归模型:
from sklearn.ensemble import GradientBoostingRegressor model = GradientBoostingRegressor() # 使用用例: x_train = [[0], [1], [2]] y_train = [0, 1, 2] model.fit(x_train, y_train) y_pred = model.predict([[3]]) print(y_pred)
17. 单层神经网络模型:
from sklearn.linear_model import Perceptron model = Perceptron() # 使用用例: x_train = [[0], [1], [2]] y_train = [0, 1, 1] model.fit(x_train, y_train) y_pred = model.predict([[3]]) print(y_pred)
18. 线性判别分析模型:
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis model = LinearDiscriminantAnalysis() # 使用用例: x_train = [[0, 0], [1, 1], [1, 0]] y_train = [0, 1, 1] model.fit(x_train, y_train) y_pred = model.predict([[2, 2]]) print(y_pred)
19. 高斯混合模型:
from sklearn.mixture import GaussianMixture model = GaussianMixture(n_components=2) # 使用用例: x_train = [[0], [1], [2]] model.fit(x_train) y_pred = model.predict([[3]]) print(y_pred)
20. 线性判别分析正则化模型:
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis model = QuadraticDiscriminantAnalysis(reg_param=0.5) # 使用用例: x_train = [[0, 0], [1, 1], [1, 0]] y_train = [0, 1, 1] model.fit(x_train, y_train) y_pred = model.predict([[2, 2]]) print(y_pred)
这是20个常见的机器学习模型示例,每个模型都有一个使用用例,用于展示如何在Python中创建和使用这些模型。你可以根据自己的需求选择适合的模型,并根据需要进行参数调整和优化。通过使用这些模型,你可以了解和应用不同类型的机器学习算法,以解决现实世界的问题。
