使用AdamWeightDecayOptimizer()进行参数优化的Python实例
发布时间:2023-12-11 09:27:42
AdamWeightDecayOptimizer()是TensorFlow中的一个优化器,它是Adam优化器的扩展版本,可以在梯度更新时对权重进行L2正则化。这可以帮助减少模型的过拟合现象。
下面是使用AdamWeightDecayOptimizer()进行参数优化的Python实例:
import tensorflow as tf
from tensorflow.contrib.opt import AdamWeightDecayOptimizer
# 定义模型
def create_model():
# 输入层
input_layer = tf.placeholder(tf.float32, shape=[None, 784])
# 隐藏层
hidden_layer = tf.layers.dense(inputs=input_layer, units=256, activation=tf.nn.relu)
# 输出层
output_layer = tf.layers.dense(inputs=hidden_layer, units=10)
return input_layer, output_layer
# 加载数据
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# 创建模型
input_layer, output_layer = create_model()
# 定义损失函数
labels = tf.placeholder(tf.float32, shape=[None, 10])
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels, logits=output_layer))
# 计算权重的L2正则化损失,并添加到总损失中
l2_loss = tf.reduce_sum([tf.nn.l2_loss(var) for var in tf.trainable_variables()])
total_loss = cross_entropy + 0.01 * l2_loss
# 使用AdamWeightDecayOptimizer进行参数优化
optimizer = AdamWeightDecayOptimizer(learning_rate=0.001,
weight_decay_rate=0.01,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-08)
train_op = optimizer.minimize(total_loss)
# 创建会话
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# 进行训练
batch_size = 100
num_steps = 10000
for step in range(num_steps):
batch_x, batch_y = mnist.train.next_batch(batch_size)
sess.run(train_op, feed_dict={input_layer: batch_x, labels: batch_y})
# 每隔100步输出训练集上的准确率
if step % 100 == 0:
accuracy = sess.run(accuracy_op, feed_dict={input_layer: mnist.train.images, labels: mnist.train.labels})
print("Step:", step, "Training Accuracy:", accuracy)
# 计算测试集上的准确率
accuracy = sess.run(accuracy_op, feed_dict={input_layer: mnist.test.images, labels: mnist.test.labels})
print("Test Accuracy:", accuracy)
这个例子展示了如何使用AdamWeightDecayOptimizer对一个简单的神经网络进行训练和测试。在训练过程中,我们使用AdamWeightDecayOptimizer对模型的权重进行更新,并使用L2正则化来控制权重的大小。然后,我们利用训练好的模型对测试集进行准确率评估。
