欢迎访问宙启技术站
智能推送

使用AdamWeightDecayOptimizer()进行参数优化的Python实例

发布时间:2023-12-11 09:27:42

AdamWeightDecayOptimizer()是TensorFlow中的一个优化器,它是Adam优化器的扩展版本,可以在梯度更新时对权重进行L2正则化。这可以帮助减少模型的过拟合现象。

下面是使用AdamWeightDecayOptimizer()进行参数优化的Python实例:

import tensorflow as tf
from tensorflow.contrib.opt import AdamWeightDecayOptimizer

# 定义模型
def create_model():
    # 输入层
    input_layer = tf.placeholder(tf.float32, shape=[None, 784])
    # 隐藏层
    hidden_layer = tf.layers.dense(inputs=input_layer, units=256, activation=tf.nn.relu)
    # 输出层
    output_layer = tf.layers.dense(inputs=hidden_layer, units=10)
    return input_layer, output_layer

# 加载数据
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

# 创建模型
input_layer, output_layer = create_model()

# 定义损失函数
labels = tf.placeholder(tf.float32, shape=[None, 10])
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels, logits=output_layer))
# 计算权重的L2正则化损失,并添加到总损失中
l2_loss = tf.reduce_sum([tf.nn.l2_loss(var) for var in tf.trainable_variables()])
total_loss = cross_entropy + 0.01 * l2_loss

# 使用AdamWeightDecayOptimizer进行参数优化
optimizer = AdamWeightDecayOptimizer(learning_rate=0.001,
                                     weight_decay_rate=0.01,
                                     beta_1=0.9,
                                     beta_2=0.999,
                                     epsilon=1e-08)

train_op = optimizer.minimize(total_loss)

# 创建会话
sess = tf.Session()
sess.run(tf.global_variables_initializer())

# 进行训练
batch_size = 100
num_steps = 10000
for step in range(num_steps):
    batch_x, batch_y = mnist.train.next_batch(batch_size)
    sess.run(train_op, feed_dict={input_layer: batch_x, labels: batch_y})
    
    # 每隔100步输出训练集上的准确率
    if step % 100 == 0:
        accuracy = sess.run(accuracy_op, feed_dict={input_layer: mnist.train.images, labels: mnist.train.labels})
        print("Step:", step, "Training Accuracy:", accuracy)

# 计算测试集上的准确率
accuracy = sess.run(accuracy_op, feed_dict={input_layer: mnist.test.images, labels: mnist.test.labels})
print("Test Accuracy:", accuracy)

这个例子展示了如何使用AdamWeightDecayOptimizer对一个简单的神经网络进行训练和测试。在训练过程中,我们使用AdamWeightDecayOptimizer对模型的权重进行更新,并使用L2正则化来控制权重的大小。然后,我们利用训练好的模型对测试集进行准确率评估。