欢迎访问宙启技术站
智能推送

使用Python实现Nets.LeNet进行人脸识别任务

发布时间:2023-12-11 08:40:31

LeNet是一个经典的卷积神经网络模型,最早由Yann Lecun等人于1998年提出,用于手写数字识别任务。虽然LeNet最初设计用于手写数字识别,但是可以通过适当的调整和训练,将其应用于其他图像识别任务,例如人脸识别。

在Python中,可以使用PyTorch库来实现LeNet进行人脸识别任务。以下是一个简单的使用例子,展示了如何使用PyTorch实现LeNet进行人脸识别。

首先,我们需要导入所需的库和模块:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms

接下来,我们需要定义LeNet模型,该模型由两个卷积层和三个全连接层组成。最后一层全连接层的输出维度将根据数据集的类别数进行设置:

class LeNet(nn.Module):
    def __init__(self, num_classes=10):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, kernel_size=5, stride=1)
        self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1)
        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, num_classes)
    
    def forward(self, x):
        x = torch.relu(self.conv1(x))
        x = torch.max_pool2d(x, kernel_size=2, stride=2)
        x = torch.relu(self.conv2(x))
        x = torch.max_pool2d(x, kernel_size=2, stride=2)
        x = x.view(x.size(0), -1)
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = self.fc3(x)
        return x

接下来,我们需要加载人脸识别数据集。这里我们使用的是PyTorch的内置数据集CIFAR10,并对图像进行了标准化处理:

batch_size = 64

transform = transforms.Compose(
    [transforms.ToTensor(),
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
                                         shuffle=False, num_workers=2)

接下来,我们需要定义损失函数和优化器:

learning_rate = 0.001

net = LeNet(num_classes=10)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9)

在训练模型之前,我们需要定义一个训练函数来迭代数据集,并进行前向传播、反向传播和参数更新:

def train(net, trainloader, criterion, optimizer, device):
    net.train()
    running_loss = 0.0
    for i, (inputs, labels) in enumerate(trainloader):
        inputs, labels = inputs.to(device), labels.to(device)
        
        optimizer.zero_grad()
        
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        
        running_loss += loss.item()
        if (i+1) % 200 == 0:
            print(f'[{epoch+1}, {i+1}] loss: {running_loss/200}')
            running_loss = 0.0

接下来,我们定义一个测试函数来评估模型在测试数据集上的准确率:

def test(net, testloader, device):
    net.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for inputs, labels in testloader:
            inputs, labels = inputs.to(device), labels.to(device)
            outputs = net(inputs)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print(f'Test accuracy: {correct/total*100}%')

最后,我们可以开始训练模型,并在测试数据集上评估模型的准确率:

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)

num_epochs = 10

for epoch in range(num_epochs):
    train(net, trainloader, criterion, optimizer, device)
    test(net, testloader, device)

以上就是使用Python实现LeNet进行人脸识别任务的简单示例。希望对你有帮助!