使用Python实现Nets.LeNet进行人脸识别任务
发布时间:2023-12-11 08:40:31
LeNet是一个经典的卷积神经网络模型,最早由Yann Lecun等人于1998年提出,用于手写数字识别任务。虽然LeNet最初设计用于手写数字识别,但是可以通过适当的调整和训练,将其应用于其他图像识别任务,例如人脸识别。
在Python中,可以使用PyTorch库来实现LeNet进行人脸识别任务。以下是一个简单的使用例子,展示了如何使用PyTorch实现LeNet进行人脸识别。
首先,我们需要导入所需的库和模块:
import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms
接下来,我们需要定义LeNet模型,该模型由两个卷积层和三个全连接层组成。最后一层全连接层的输出维度将根据数据集的类别数进行设置:
class LeNet(nn.Module):
def __init__(self, num_classes=10):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(3, 6, kernel_size=5, stride=1)
self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, num_classes)
def forward(self, x):
x = torch.relu(self.conv1(x))
x = torch.max_pool2d(x, kernel_size=2, stride=2)
x = torch.relu(self.conv2(x))
x = torch.max_pool2d(x, kernel_size=2, stride=2)
x = x.view(x.size(0), -1)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
接下来,我们需要加载人脸识别数据集。这里我们使用的是PyTorch的内置数据集CIFAR10,并对图像进行了标准化处理:
batch_size = 64
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=2)
接下来,我们需要定义损失函数和优化器:
learning_rate = 0.001 net = LeNet(num_classes=10) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9)
在训练模型之前,我们需要定义一个训练函数来迭代数据集,并进行前向传播、反向传播和参数更新:
def train(net, trainloader, criterion, optimizer, device):
net.train()
running_loss = 0.0
for i, (inputs, labels) in enumerate(trainloader):
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if (i+1) % 200 == 0:
print(f'[{epoch+1}, {i+1}] loss: {running_loss/200}')
running_loss = 0.0
接下来,我们定义一个测试函数来评估模型在测试数据集上的准确率:
def test(net, testloader, device):
net.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in testloader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Test accuracy: {correct/total*100}%')
最后,我们可以开始训练模型,并在测试数据集上评估模型的准确率:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)
num_epochs = 10
for epoch in range(num_epochs):
train(net, trainloader, criterion, optimizer, device)
test(net, testloader, device)
以上就是使用Python实现LeNet进行人脸识别任务的简单示例。希望对你有帮助!
