用Python编写的LeNet模型参数随机生成器
发布时间:2023-12-11 06:24:07
LeNet是一个经典的卷积神经网络模型,由Yann LeCun于1998年提出,用于手写数字识别。LeNet模型有7个层次,包括2个卷积层、2个池化层和3个全连接层。LeNet模型参数的随机生成器是一个用于生成模型训练时所需的初始权重和偏置的工具。
以下是一个使用Python编写的LeNet模型参数随机生成器的例子:
import numpy as np
class LeNetParameterGenerator:
def __init__(self, num_classes):
self.num_classes = num_classes
def generate_conv_weights(self, shape):
# 生成卷积层的权重
weights = np.random.randn(*shape) * 0.01
return weights
def generate_conv_bias(self, shape):
# 生成卷积层的偏置
bias = np.zeros(shape)
return bias
def generate_fc_weights(self, shape):
# 生成全连接层的权重
weights = np.random.randn(*shape) * 0.01
return weights
def generate_fc_bias(self, shape):
# 生成全连接层的偏置
bias = np.zeros(shape)
return bias
def generate_output_weights(self, shape):
# 生成输出层的权重
weights = np.random.randn(*shape) * 0.01
return weights
def generate_output_bias(self, shape):
# 生成输出层的偏置
bias = np.zeros(shape)
return bias
def generate(self):
conv1_weights = self.generate_conv_weights((6, 5, 5))
conv1_bias = self.generate_conv_bias(6)
conv2_weights = self.generate_conv_weights((16, 5, 5))
conv2_bias = self.generate_conv_bias(16)
fc1_weights = self.generate_fc_weights((16 * 5 * 5, 120))
fc1_bias = self.generate_fc_bias(120)
fc2_weights = self.generate_fc_weights((120, 84))
fc2_bias = self.generate_fc_bias(84)
output_weights = self.generate_output_weights((84, self.num_classes))
output_bias = self.generate_output_bias(self.num_classes)
return conv1_weights, conv1_bias, conv2_weights, conv2_bias, fc1_weights, fc1_bias, fc2_weights, fc2_bias, output_weights, output_bias
使用例子:
num_classes = 10
lenet_generator = LeNetParameterGenerator(num_classes)
conv1_weights, conv1_bias, conv2_weights, conv2_bias, fc1_weights, fc1_bias, fc2_weights, fc2_bias, output_weights, output_bias = lenet_generator.generate()
print("conv1_weights shape:", conv1_weights.shape)
print("conv1_bias shape:", conv1_bias.shape)
print("conv2_weights shape:", conv2_weights.shape)
print("conv2_bias shape:", conv2_bias.shape)
print("fc1_weights shape:", fc1_weights.shape)
print("fc1_bias shape:", fc1_bias.shape)
print("fc2_weights shape:", fc2_weights.shape)
print("fc2_bias shape:", fc2_bias.shape)
print("output_weights shape:", output_weights.shape)
print("output_bias shape:", output_bias.shape)
输出结果:
conv1_weights shape: (6, 5, 5) conv1_bias shape: (6,) conv2_weights shape: (16, 5, 5) conv2_bias shape: (16,) fc1_weights shape: (400, 120) fc1_bias shape: (120,) fc2_weights shape: (120, 84) fc2_bias shape: (84,) output_weights shape: (84, 10) output_bias shape: (10,)
以上代码中,LeNetParameterGenerator类中的generate方法会生成LeNet模型各层的权重和偏置参数。生成过程中使用了正态分布来随机初始化权重,而将偏置初始化为零。最终返回生成的权重和偏置张量。
在使用例子中,创建了一个LeNetParameterGenerator对象,并指定了num_classes参数为10,代表有10个类别需要识别。然后调用generate方法生成LeNet模型的各层参数,并打印出参数的形状。
这个LeNet模型参数随机生成器可以帮助我们在训练LeNet模型之前初始化模型的权重和偏置参数,从而能够更好地进行分类任务的训练。
