Python编程实现的20个随机_Feature()生成工具
Python编程实现的20个随机_Feature()生成工具
在数据分析和机器学习中,常常需要生成一些随机的特征来进行实验和模型训练。Python是一种非常强大的编程语言,在生成随机特征方面有很多工具和库可供使用。下面是20个使用Python编程实现的随机_Feature()生成工具,每个工具都包含一个使用例子。
1. 随机整数特征(随机整数值)
import random
def random_integer_feature():
return random.randint(0, 100)
# 使用例子
feature = random_integer_feature()
print(feature)
输出例子:57
2. 随机浮点数特征(随机浮点数值)
import random
def random_float_feature():
return random.uniform(0, 1)
# 使用例子
feature = random_float_feature()
print(feature)
输出例子:0.3141592653589793
3. 随机布尔特征(随机True或False)
import random
def random_boolean_feature():
return random.choice([True, False])
# 使用例子
feature = random_boolean_feature()
print(feature)
输出例子:True
4. 随机字符串特征(随机由字母和数字组成的字符串)
import random
import string
def random_string_feature():
length = random.randint(5, 10)
return ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(length))
# 使用例子
feature = random_string_feature()
print(feature)
输出例子:y7N4Sq
5. 随机日期特征(随机日期值)
import random
import datetime
def random_date_feature():
start_date = datetime.date(2022, 1, 1)
end_date = datetime.date(2022, 12, 31)
return start_date + datetime.timedelta(days=random.randint(0, (end_date - start_date).days))
# 使用例子
feature = random_date_feature()
print(feature)
输出例子:2022-08-26
6. 随机正态分布特征(随机满足正态分布的数值)
import random
import numpy as np
def random_normal_feature(mean, std_dev):
return np.random.normal(mean, std_dev)
# 使用例子
feature = random_normal_feature(0, 1)
print(feature)
输出例子:-0.214577901863
7. 随机指数分布特征(随机满足指数分布的数值)
import random
import numpy as np
def random_exponential_feature(scale):
return np.random.exponential(scale)
# 使用例子
feature = random_exponential_feature(2)
print(feature)
输出例子:0.532046883301
8. 随机离散分布特征(随机满足离散分布的数值)
import random
def random_discrete_feature(choices, probabilities):
return random.choices(choices, probabilities)[0]
# 使用例子
choices = ['apple', 'banana', 'orange']
probabilities = [0.5, 0.3, 0.2]
feature = random_discrete_feature(choices, probabilities)
print(feature)
输出例子:apple
9. 随机正弦波特征(随机满足正弦波形的数值)
import random
import numpy as np
def random_sine_wave_feature(amplitude, frequency, phase):
x = np.random.uniform(0, 10, 1000)
y = amplitude * np.sin(2 * np.pi * frequency * x + phase)
index = random.randint(0, len(y) - 1)
return y[index]
# 使用例子
feature = random_sine_wave_feature(1, 0.5, 0)
print(feature)
输出例子:0.819704687758
10. 随机噪声特征(随机满足噪声分布的数值)
import random
import numpy as np
def random_noise_feature(mean, std_dev):
return np.random.normal(mean, std_dev)
# 使用例子
feature = random_noise_feature(0, 1)
print(feature)
输出例子:0.262031384728
11. 随机高斯白噪声特征(随机满足高斯白噪声分布的数值)
import random
import numpy as np
def random_white_noise_feature(mean, std_dev):
return np.random.normal(mean, std_dev)
# 使用例子
feature = random_white_noise_feature(0, 1)
print(feature)
输出例子:-0.673358731413
12. 随机线性回归特征(随机满足线性回归关系的数值)
import random
import numpy as np
def random_linear_regression_feature(slope, intercept, noise_std_dev):
x = np.random.uniform(0, 10, 1000)
y = slope * x + intercept + np.random.normal(0, noise_std_dev, len(x))
index = random.randint(0, len(y) - 1)
return y[index]
# 使用例子
feature = random_linear_regression_feature(2, 1, 0.5)
print(feature)
输出例子:6.25797024555
13. 随机分类特征(随机满足分类概率的数值)
import random
def random_categorical_feature(categories, probabilities):
return random.choices(categories, probabilities)[0]
# 使用例子
categories = ['cat', 'dog', 'bird']
probabilities = [0.3, 0.4, 0.3]
feature = random_categorical_feature(categories, probabilities)
print(feature)
输出例子:bird
14. 随机权重特征(随机满足权重分布的数值)
import random
def random_weight_feature(weights):
return random.choices(range(len(weights)), weights=weights)[0]
# 使用例子
weights = [0.2, 0.3, 0.5]
feature = random_weight_feature(weights)
print(feature)
输出例子:2
15. 随机排列特征(随机生成的一组不重复的数值序列)
import random
def random_permutation_feature(start, end):
return random.sample(range(start, end + 1), end - start + 1)
# 使用例子
feature = random_permutation_feature(1, 10)
print(feature)
输出例子:[9, 2, 6, 5, 1, 7, 10, 8, 3, 4]
16. 随机组合特征(随机生成的一组任意长度的组合数值序列)
import random
def random_combination_feature(choices, length):
return random.sample(choices, length)
# 使用例子
choices = ['red', 'green', 'blue']
feature = random_combination_feature(choices, 2)
print(feature)
输出例子:['blue', 'green']
17. 随机采样特征(随机从一组数值中采样得到的子集合)
import random
def random_sample_feature(choices, sample_size):
return random.sample(choices, sample_size)
# 使用例子
choices = ['a', 'b', 'c', 'd', 'e']
feature = random_sample_feature(choices, 3)
print(feature)
输出例子:['b', 'c', 'd']
18. 随机字典特征(随机生成的一组由键和值组成的字典)
import random
import string
def random_dict_feature(length):
keys = random.sample(string.ascii_lowercase, length)
values = random.sample(range(1, length + 1), length)
return {key: value for key, value in zip(keys, values)}
# 使用例子
feature = random_dict_feature(3)
print(feature)
输出例子:{'c': 1, 'b': 2, 'a': 3}
19. 随机矩阵特征(随机生成的一组指定大小和范围的
