欢迎访问宙启技术站
智能推送

使用Python编写的RNN模型进行中文文本翻译

发布时间:2023-12-11 05:16:17

以下是一个使用Python编写的RNN模型进行中文文本翻译的示例,代码使用了PyTorch框架。

首先,我们需要导入必要的库:

import torch
import torch.nn as nn
import torch.optim as optim
from torchtext.legacy.datasets import TranslationDataset
from torchtext.legacy.data import BucketIterator, Field

然后,我们定义模型的参数:

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

BATCH_SIZE = 64
EMBEDDING_SIZE = 256
HIDDEN_SIZE = 512
NUM_LAYERS = 2
DROPOUT = 0.2

SRC_LANGUAGE = 'zh'
TRG_LANGUAGE = 'en'

接下来,我们定义数据预处理的方法:

def tokenize(text):
    return list(text)

SRC = Field(tokenize=tokenize,
            init_token='<sos>',
            eos_token='<eos>',
            lower=True,
            batch_first=True)

TRG = Field(tokenize=tokenize,
            init_token='<sos>',
            eos_token='<eos>',
            lower=True,
            batch_first=True)

train_data, valid_data, test_data = TranslationDataset.splits(
    path='data',
    train='train_data.txt',
    validation='valid_data.txt',
    test='test_data.txt',
    exts=('.'+SRC_LANGUAGE, '.'+TRG_LANGUAGE),
    fields=(SRC, TRG)
)

SRC.build_vocab(train_data, min_freq=2)
TRG.build_vocab(train_data, min_freq=2)

再然后,我们定义模型的架构:

class Encoder(nn.Module):
    def __init__(self, input_dim, embedding_dim, hidden_size, num_layers, dropout):
        super(Encoder, self).__init__()
        self.embedding = nn.Embedding(input_dim, embedding_dim)
        self.rnn = nn.GRU(embedding_dim, hidden_size, num_layers, dropout=dropout)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, src):
        embedded = self.dropout(self.embedding(src))
        outputs, hidden = self.rnn(embedded)
        return outputs, hidden

class Decoder(nn.Module):
    def __init__(self, output_dim, embedding_dim, hidden_size, num_layers, dropout):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(output_dim, embedding_dim)
        self.rnn = nn.GRU(embedding_dim, hidden_size, num_layers, dropout=dropout)
        self.out = nn.Linear(hidden_size, output_dim)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, input, hidden):
        input = input.unsqueeze(0)
        embedded = self.dropout(self.embedding(input))
        output, hidden = self.rnn(embedded, hidden)
        predicted = self.out(output.squeeze(0))
        return predicted, hidden

class Seq2Seq(nn.Module):
    def __init__(self, encoder, decoder, device):
        super(Seq2Seq, self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.device = device
        
    def forward(self, src, trg):
        batch_size = src.shape[0]
        max_len = trg.shape[1]
        trg_vocab_size = self.decoder.out.out_features
        
        outputs = torch.zeros(batch_size, max_len, trg_vocab_size).to(self.device)
        
        encoder_outputs, hidden = self.encoder(src)
        
        input = trg[:, 0]
        for t in range(1, max_len):
            output, hidden = self.decoder(input, hidden)
            outputs[:, t] = output
            input = output.argmax(1)
        return outputs

接着,我们实例化模型并定义优化函数:

encoder = Encoder(len(SRC.vocab), EMBEDDING_SIZE, HIDDEN_SIZE, NUM_LAYERS, DROPOUT)
decoder = Decoder(len(TRG.vocab), EMBEDDING_SIZE, HIDDEN_SIZE, NUM_LAYERS, DROPOUT)
model = Seq2Seq(encoder, decoder, device).to(device)

optimizer = optim.Adam(model.parameters())
criterion = nn.CrossEntropyLoss(ignore_index=TRG.vocab.stoi[TRG.pad_token])

然后,我们定义训练和评估的过程:

def train(model, iterator, optimizer, criterion, clip):
    model.train()
    
    epoch_loss = 0
    
    for i, batch in enumerate(iterator):
        src = batch.src.to(device)
        trg = batch.trg.to(device)
        
        optimizer.zero_grad()
        output = model(src, trg)
        
        output_dim = output.shape[-1]
        
        output = output[:, 1:].contiguous().view(-1, output_dim)
        trg = trg[:, 1:].contiguous().view(-1)
        
        loss = criterion(output, trg)
        
        loss.backward()
        
        torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
        
        optimizer.step()
        
        epoch_loss += loss.item()
        
    return epoch_loss / len(iterator)

def evaluate(model, iterator, criterion):
    model.eval()
    
    epoch_loss = 0
    
    with torch.no_grad():
        for i, batch in enumerate(iterator):
            src = batch.src.to(device)
            trg = batch.trg.to(device)

            output = model(src, trg)

            output_dim = output.shape[-1]

            output = output[:, 1:].contiguous().view(-1, output_dim)
            trg = trg[:, 1:].contiguous().view(-1)

            loss = criterion(output, trg)

            epoch_loss += loss.item()
        
    return epoch_loss / len(iterator)

最后,我们可以进行模型的训练和评估:

N_EPOCHS = 10
CLIP = 1

train_iterator, valid_iterator, test_iterator = BucketIterator.splits((train_data, valid_data, test_data),
                                                                      batch_size=BATCH_SIZE,
                                                                      sort_key=lambda x: len(x.src),
                                                                      sort_within_batch=True,
                                                                      device=device)

best_valid_loss = float('inf')

for epoch in range(N_EPOCHS):
    train_loss = train(model, train_iterator, optimizer, criterion, CLIP)
    valid_loss = evaluate(model, valid_iterator, criterion)
    
    if valid_loss < best_valid_loss:
        best_valid_loss = valid_loss
        torch.save(model.state_dict(), 'model.pt')

以上是一个使用Python编写的RNN模型进行中文文本翻译的示例。该示例主要包括数据预处理、模型架构定义、训练和评估的过程。你可以根据自己的需要对该示例进行修改和扩展,以满足特定的文本翻译任务。