Python中allennlp.data.fields实现中文文本分类的方法
发布时间:2023-12-11 03:58:30
在Python中,可以使用allennlp库中的TextField字段和LabelField字段来实现中文文本分类。TextField字段用于存储文本数据,LabelField字段用于存储标签数据。
首先,我们需要导入必要的库和模块:
import allennlp from allennlp.data import Instance from allennlp.data.fields import TextField, LabelField from allennlp.data.tokenizers import Tokenizer, CharacterTokenizer from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer from allennlp.data.vocabulary import Vocabulary
接下来,我们需要定义一个数据处理函数,该函数将输入文本和标签,并返回一个Instance对象。在数据处理函数中,我们首先使用字符级分词器CharacterTokenizer对中文文本进行分词,然后使用TextField字段将分词后的文本存储为一个字段。同时,我们使用LabelField字段将标签存储为另一个字段。
def process_data(text: str, label: str, tokenizer: Tokenizer, token_indexer: TokenIndexer) -> Instance:
tokens = tokenizer.tokenize(text)
text_field = TextField(tokens, {'tokens' : token_indexer})
label_field = LabelField(label)
fields = {'text': text_field, 'label': label_field}
return Instance(fields)
接下来,我们需要定义一个函数来读取和处理数据集。在这个例子中,我们假设数据集是以CSV格式存储在文件中的。我们使用pandas库来读取CSV文件,并将数据转换为适合使用allennlp的格式。然后,我们使用LazyDataset来将数据集分批次地读入,以避免内存压力。
import pandas as pd
from allennlp.data.dataset_readers import DatasetReader
from allennlp.data.tokenizers import PretrainedTransformerTokenizer
from allennlp.data.data_loaders import SimpleDataLoader
from allennlp.training import GradientDescentTrainer
from allennlp.models import BasicClassifier
class ChineseTextClassificationReader(DatasetReader):
def __init__(self, tokenizer: Tokenizer, token_indexers: Dict[str, TokenIndexer]):
super().__init__(lazy=False)
self.tokenizer = tokenizer
self.token_indexers = token_indexers
def text_to_instance(self, text: str, label: str = None) -> Instance:
return process_data(text, label, self.tokenizer, self.token_indexers)
def _read(self, file_path: str):
data = pd.read_csv(file_path)
for i, row in data.iterrows():
text = row['text']
label = row['label']
yield self.text_to_instance(text, label)
reader = ChineseTextClassificationReader(tokenizer=CharacterTokenizer(),
token_indexers={'tokens': SingleIdTokenIndexer()})
train_dataset = reader.read('train_data.csv')
validation_dataset = reader.read('dev_data.csv')
train_data_loader = SimpleDataLoader(train_dataset, batch_size=32)
validation_data_loader = SimpleDataLoader(validation_dataset, batch_size=32)
然后,我们需要定义模型。在这个例子中,我们使用一个基本的分类器模型。我们使用allennlp提供的BasicClassifier模型来构建分类器模型。
from allennlp.models import BasicClassifier
from allennlp.modules.text_field_embedders import BasicTextFieldEmbedder
from allennlp.modules.token_embedders import PretrainedTransformerEmbedder
from allennlp.nn.util import get_text_field_mask
from allennlp.modules.seq2vec_encoders import CnnEncoder
from allennlp.training.metrics import CategoricalAccuracy
class TextClassificationModel(BasicClassifier):
def __init__(self, vocab: Vocabulary):
text_field_embedder = BasicTextFieldEmbedder({
'tokens': PretrainedTransformerEmbedder('bert-base-chinese')} )
seq2vec_encoder = CnnEncoder(embedding_dim=768, num_filters=128, ngram_filter_sizes=(2, 3, 4, 5))
super().__init__(vocab, text_field_embedder, seq2vec_encoder,
calculate_loss=True, classification_layer_dims=[128, 2])
self.accuracy = CategoricalAccuracy()
def forward(self, text: TextField, label: LabelField) -> Dict[str, torch.Tensor]:
embedder_out = self.text_field_embedder(text)
mask = get_text_field_mask(text)
encoded = self.seq2vec_encoder(embedder_out, mask)
logits = self.classifier_feedforward(encoded)
output = {'logits': logits}
if label is not None:
self.accuracy(logits, label)
output['loss'] = self.loss(logits, label)
return output
vocab = Vocabulary.from_instances(train_dataset)
model = TextClassificationModel(vocab)
最后,我们可以使用GradientDescentTrainer来训练模型。
trainer = GradientDescentTrainer(model=model,
data_loader=train_data_loader,
validation_data_loader=validation_data_loader,
num_epochs=10,
optimizer=Optimizer.from_params(model.named_parameters(),
{'type': 'adam'}),
serialization_dir='model',
cuda_device=0)
trainer.train()
以上例子展示了如何使用allennlp库中的TextField和LabelField字段实现中文文本分类的方法。你可以根据需要对代码进行修改,并根据你的数据集和模型需求进行调整。
