欢迎访问宙启技术站
智能推送

Python中allennlp.data.fields实现中文文本分类的方法

发布时间:2023-12-11 03:58:30

在Python中,可以使用allennlp库中的TextField字段和LabelField字段来实现中文文本分类。TextField字段用于存储文本数据,LabelField字段用于存储标签数据。

首先,我们需要导入必要的库和模块:

import allennlp
from allennlp.data import Instance
from allennlp.data.fields import TextField, LabelField
from allennlp.data.tokenizers import Tokenizer, CharacterTokenizer
from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer
from allennlp.data.vocabulary import Vocabulary

接下来,我们需要定义一个数据处理函数,该函数将输入文本和标签,并返回一个Instance对象。在数据处理函数中,我们首先使用字符级分词器CharacterTokenizer对中文文本进行分词,然后使用TextField字段将分词后的文本存储为一个字段。同时,我们使用LabelField字段将标签存储为另一个字段。

def process_data(text: str, label: str, tokenizer: Tokenizer, token_indexer: TokenIndexer) -> Instance:
    tokens = tokenizer.tokenize(text)
    text_field = TextField(tokens, {'tokens' : token_indexer})
    label_field = LabelField(label)
    fields = {'text': text_field, 'label': label_field}
    return Instance(fields)

接下来,我们需要定义一个函数来读取和处理数据集。在这个例子中,我们假设数据集是以CSV格式存储在文件中的。我们使用pandas库来读取CSV文件,并将数据转换为适合使用allennlp的格式。然后,我们使用LazyDataset来将数据集分批次地读入,以避免内存压力。

import pandas as pd
from allennlp.data.dataset_readers import DatasetReader
from allennlp.data.tokenizers import PretrainedTransformerTokenizer
from allennlp.data.data_loaders import SimpleDataLoader
from allennlp.training import GradientDescentTrainer
from allennlp.models import BasicClassifier

class ChineseTextClassificationReader(DatasetReader):

    def __init__(self, tokenizer: Tokenizer, token_indexers: Dict[str, TokenIndexer]):
        super().__init__(lazy=False)
        self.tokenizer = tokenizer
        self.token_indexers = token_indexers

    def text_to_instance(self, text: str, label: str = None) -> Instance:
        return process_data(text, label, self.tokenizer, self.token_indexers)

    def _read(self, file_path: str):
        data = pd.read_csv(file_path)
        for i, row in data.iterrows():
            text = row['text']
            label = row['label']
            yield self.text_to_instance(text, label)

reader = ChineseTextClassificationReader(tokenizer=CharacterTokenizer(), 
                                          token_indexers={'tokens': SingleIdTokenIndexer()})

train_dataset = reader.read('train_data.csv')
validation_dataset = reader.read('dev_data.csv')

train_data_loader = SimpleDataLoader(train_dataset, batch_size=32)
validation_data_loader = SimpleDataLoader(validation_dataset, batch_size=32)

然后,我们需要定义模型。在这个例子中,我们使用一个基本的分类器模型。我们使用allennlp提供的BasicClassifier模型来构建分类器模型。

from allennlp.models import BasicClassifier
from allennlp.modules.text_field_embedders import BasicTextFieldEmbedder
from allennlp.modules.token_embedders import PretrainedTransformerEmbedder
from allennlp.nn.util import get_text_field_mask
from allennlp.modules.seq2vec_encoders import CnnEncoder
from allennlp.training.metrics import CategoricalAccuracy

class TextClassificationModel(BasicClassifier):

    def __init__(self, vocab: Vocabulary):
        text_field_embedder = BasicTextFieldEmbedder({
            'tokens': PretrainedTransformerEmbedder('bert-base-chinese')} )
        seq2vec_encoder = CnnEncoder(embedding_dim=768, num_filters=128, ngram_filter_sizes=(2, 3, 4, 5))
        super().__init__(vocab, text_field_embedder, seq2vec_encoder,
                         calculate_loss=True, classification_layer_dims=[128, 2])
        self.accuracy = CategoricalAccuracy()

    def forward(self, text: TextField, label: LabelField) -> Dict[str, torch.Tensor]:
        embedder_out = self.text_field_embedder(text)
        mask = get_text_field_mask(text)
        encoded = self.seq2vec_encoder(embedder_out, mask)
        logits = self.classifier_feedforward(encoded)
        output = {'logits': logits}
        if label is not None:
            self.accuracy(logits, label)
            output['loss'] = self.loss(logits, label)
        return output

vocab = Vocabulary.from_instances(train_dataset)
model = TextClassificationModel(vocab)

最后,我们可以使用GradientDescentTrainer来训练模型。

trainer = GradientDescentTrainer(model=model,
                                data_loader=train_data_loader,
                                validation_data_loader=validation_data_loader,
                                num_epochs=10,
                                optimizer=Optimizer.from_params(model.named_parameters(), 
                                                               {'type': 'adam'}),
                                serialization_dir='model',
                                cuda_device=0)
trainer.train()

以上例子展示了如何使用allennlp库中的TextFieldLabelField字段实现中文文本分类的方法。你可以根据需要对代码进行修改,并根据你的数据集和模型需求进行调整。