欢迎访问宙启技术站
智能推送

使用Python编程实现的Attention模型在文字识别中的应用

发布时间:2023-12-11 02:46:21

Attention机制是一种通过学习权重让模型更加关注输入序列中不同部分的方法。在文字识别中,Attention模型可以用于识别图片中的文字内容。

下面是一个使用Python编程实现的Attention模型在文字识别中的应用的例子:

import tensorflow as tf
from tensorflow.keras import layers, models

class Attention(layers.Layer):
    def __init__(self):
        super(Attention, self).__init__()

    def build(self, input_shape):
        self.W = self.add_weight(shape=(input_shape[-1], 1),
                                 initializer='random_normal',
                                 trainable=True)
        self.b = self.add_weight(shape=(input_shape[1], 1),
                                 initializer='zeros',
                                 trainable=True)

    def call(self, inputs):
        scores = tf.transpose(tf.matmul(inputs, self.W), [0, 2, 1])
        attention_weights = tf.nn.softmax(scores + self.b, axis=-1)
        context_vector = tf.matmul(attention_weights, inputs)
        context_vector = tf.reduce_sum(context_vector, axis=1)
        return context_vector

# 构建AttentionOCR模型
class AttentionOCR(models.Model):
    def __init__(self, num_classes, attention_units=64, rnn_units=256):
        super(AttentionOCR, self).__init__()
        self.attention_units = attention_units
        self.rnn_units = rnn_units

        self.conv1 = layers.Conv2D(32, 3, activation='relu')
        self.conv2 = layers.Conv2D(64, 3, activation='relu')
        self.max_pooling = layers.MaxPooling2D()
        self.flatten = layers.Flatten()

        self.attention = Attention()

        self.rnn1 = layers.LSTM(self.rnn_units,
                                return_sequences=True,
                                return_state=True)
        self.rnn2 = layers.LSTM(self.rnn_units,
                                return_sequences=True,
                                return_state=True)
        self.fc = layers.Dense(num_classes, activation='softmax')

    def call(self, inputs):
        x = self.conv1(inputs)
        x = self.conv2(x)
        x = self.max_pooling(x)
        x = self.flatten(x)

        x = tf.expand_dims(x, axis=1)
        x = tf.expand_dims(x, axis=1)

        x = self.attention(x)

        x = tf.expand_dims(x, axis=1)

        x, _, _ = self.rnn1(x)
        x, _, _ = self.rnn2(x)
        output = self.fc(x)

        return output

# 构建数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()

x_train = x_train.reshape(-1, 28, 28, 1).astype('float32') / 255.0
x_test = x_test.reshape(-1, 28, 28, 1).astype('float32') / 255.0
y_train = tf.keras.utils.to_categorical(y_train, num_classes=10)
y_test = tf.keras.utils.to_categorical(y_test, num_classes=10)

# 实例化模型
model = AttentionOCR(num_classes=10)

# 编译模型
model.compile(optimizer=tf.keras.optimizers.Adam(),
              loss=tf.keras.losses.CategoricalCrossentropy(),
              metrics=['accuracy'])

# 训练模型
history = model.fit(x_train, y_train, batch_size=128, epochs=10, validation_data=(x_test, y_test))

# 使用训练好的模型进行预测
pred = model.predict(x_test)

在上述例子中,我们首先定义了一个Attention层,用来计算输入序列的注意力权重。然后,我们构建了一个基于Attention的OCR模型,包括卷积层、Attention层和双向LSTM层。最后,我们使用MNIST数据集训练了模型,并进行了预测。

通过引入Attention机制,模型可以在处理输入序列时更加关注不同部分的信息,从而提高模型的文字识别性能。