使用Python编写的Haskell人工智能算法案例
发布时间:2023-12-09 06:06:35
以下是一个使用Python编写的Haskell人工智能算法案例:
示例:简单的Haskell人工智能游戏
在本例中,我们将构建一个简单的Haskell人工智能游戏,将用于猜测一个随机生成的数字。我们将使用遗传算法来训练我们的人工智能,以便它能够更好地猜测数字。
首先,我们需要导入所需的库:
import random import string import time
接下来,我们定义我们的Haskell人工智能类:
class HaskellAI:
def __init__(self):
self.guess_length = 5
self.population_size = 100
self.mutation_rate = 0.01
self.target_number = random.randint(1, 100)
def generate_population(self):
population = []
for _ in range(self.population_size):
guess = ''.join(random.choices(string.digits, k=self.guess_length))
population.append(guess)
return population
def calculate_fitness(self, guess):
fitness = 0
for i in range(len(guess)):
if guess[i] == str(self.target_number)[i]:
fitness += 1
return fitness
def select_parents(self, population):
parents = []
for _ in range(2):
fitness_values = [self.calculate_fitness(guess) for guess in population]
total_fitness = sum(fitness_values)
selection_probs = [fitness / total_fitness for fitness in fitness_values]
parent = random.choices(population, weights=selection_probs)[0]
parents.append(parent)
return parents
def crossover(self, parents):
crossover_point = random.randint(1, self.guess_length - 1)
child1 = parents[0][:crossover_point] + parents[1][crossover_point:]
child2 = parents[1][:crossover_point] + parents[0][crossover_point:]
return child1, child2
def mutate(self, child):
mutated = ''
for char in child:
if random.random() < self.mutation_rate:
mutated += random.choice(string.digits)
else:
mutated += char
return mutated
def evolve(self, generations):
population = self.generate_population()
for _ in range(generations):
new_population = []
for _ in range(self.population_size // 2):
parents = self.select_parents(population)
child1, child2 = self.crossover(parents)
mutated_child1 = self.mutate(child1)
mutated_child2 = self.mutate(child2)
new_population.extend([mutated_child1, mutated_child2])
population = new_population
return population
现在,我们可以创建一个HaskellAI的实例,并使用它来进行演化:
ai = HaskellAI()
generations = 1000
start_time = time.time()
population = ai.evolve(generations)
end_time = time.time()
execution_time = end_time - start_time
print(f"Target number: {ai.target_number}")
print(f"Best guess: {population[0]}")
print(f"Execution time: {execution_time} seconds")
在这个例子中,我们首先创建了一个HaskellAI的实例,然后调用了evolve方法进行演化。在每一代中,我们使用选择、交叉和突变操作来生成下一代人口。最后,我们打印出演化过程中的一些结果,包括目标数字、最佳猜测和算法的执行时间。
要注意的是,由于遗传算法的随机性质,每次运行程序时都会得到不同的结果。此外,该示例只是一个简单的示例,实际上的Haskell人工智能问题可能要复杂得多。
希望通过这个例子,您能够更好地理解如何使用Python编写一个Haskell人工智能算法,并且可以根据实际需求进行修改和扩展。
